meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
groups:mg:private:steffensauer:start [2019/11/26 14:09] ssauergroups:mg:private:steffensauer:start [2020/12/17 14:49] (current) – [Lasertreiber] ssauer
Line 5: Line 5:
   * Leiterplatten: https://www.multi-circuit-boards.eu/index.html   * Leiterplatten: https://www.multi-circuit-boards.eu/index.html
     * Login-Nummer: 162258      * Login-Nummer: 162258 
 +  * 10 MHz Mail: 10mhz@iqo.uni-hannover.de
 +    * passwort: pAd98Y24
 +  * Grafana: http://thingol:3000/d/63RLCU1Mz/influx?from=1608117070423&orgId=1&to=1608203470423
 +    * Benutzername: admin
 +    * Passwort: ramsey
  
 +  * [[.:Metamirror|Metamirror]]
 ===== Paper Sammlung ===== ===== Paper Sammlung =====
 +
 +==== General ====
 +  * {{ :groups:mg:nphoton.2010.313.pdf |Making optical atomic clocks more stable with 10−16-level laser stabilization}}, V. Jiang et al.,Nature Photonics **5**, 158–161 (2011)
 +  * {{ :groups:mg:coating_book_chap_15_precision_fp_cavity.pdf |High-precision laser stabilization via optical cavities}}, M. Martin and J. Ye
 +  * {{ :groups:mg:private:steffensauer:guidelines_for_developing_optical_clocks_with10_18fractional_frequency_uncertainty.pdf |}}
 +
 +    
 +==== Relevant effects influencing frequency stability ====
 +=== Noise calculation ===
 +          * {{ :groups:mg:physrevlett.93.250602.pdf |Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities}}, K. Numata et al., PRL **93**, 250602 (2004)
 +          * {{ :groups:mg:josab-29-1-178.pdf |Thermal noise in optical cavities revisited}}, T. Kessler et al., J. Opt. Soc. Am. B Vol. **29**, No. 1 (2012)
 +      * **Reduction of thermal noise limit**
 +          * **Higher-order mode locking:**
 +            * {{ :groups:mg:project_ptb-cavity:1801.05026.pdf |Thermal noise limited higher-order mode locking of a reference cavity}}, X. Y. Zeng et al., arXiv:1801.05026v1 (2018)
 +=== Pound-Drever-Hall (PDH) ===
 +          * {{ :groups:mg:laser_phase_and_frequency_stabilization_using_an_optical_resonator.pdf |Laser Phase and Frequency Stabilization Using an Optical Resonator}}, R. W. P. Drever et al., Appl. Phys. B **31**, 97-105 (1983)
 +          * EOM-Temperature
 +=== Vibration ===
 +          * {{ :groups:mg:art_3a10.1007_2fs00340-013-5676-y.pdf |Simple vibration-insensitive cavity for laser stabilization at the 10^-16 level}}, J. Keller et al., Appl. Phys. **B 116**, 203–210 (2014) 
 +          * https://journals.aps.org/pra/abstract/10.1103/PhysRevA.79.053829
 +=== Residual amplitude modulation ===
 +          * {{ :groups:mg:ol-39-7-1980.pdf |Reduction of residual amplitude modulation to 1 × 10-6 for frequency modulation and laser stabilization}}, W. Zhang et al., Optics Letters Vol. **39**, No. 7 (2014)
 +          * {{ :groups:mg:05095849.pdf |Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique}}, Z. Li et al., Sensors and Actuators B **196**, 23–30 (2014)
 +          * {{ :groups:mg:josaa-31-1-81.pdf |Residual amplitude modulation in interferometric gravitational wave detector}}, K. Kokeyama et al., J. Opt. Soc. Am. A Vol. **31**, No. 1 (2014)
 +              * {{ :groups:mg:1309.4522.pdf |Residual Amplitude Modulation in Interferometric Gravitational Wave Detectors}}, K. Kokeyama et al.,  aXiv:1309.4522v1 [gr-qc] 18 Sep 2013
 +=== Temperature/CTE ===
 +    * **ULE compensations rings:** 
 +          * {{ :groups:mg:leg10.pdf |Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors}}, T. Legero et al., J. Opt. Soc. Am. B Vol. **27**, No. 5 (2010) 
 +
 +
 +
 +
 +==== Spacer geometries / Cavity types ====
 +  * **Vertical geometry:**
 +          * **Length: 2.5 cm:**
 +             * {{ :groups:mg:project_ptb-cavity:ol-42-7-1277.pdf |Compact, thermal-noise-limited reference cavity
 +for ultra-low-noise microwave generation}}, J. Davila-Rodriguez et al., Opt. lett. Vol. 42, No. 7 (2017)
 +          * **Length: 7 cm:**
 +             * {{ :groups:mg:ol-32-6-641.pdf |Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15}}, A. D. Ludlow et al., Optics Letters Vol. **32**, Issue 6, pp. 641-643 (2007) 
 +          * **Length: 10 cm:**
 +             * {{ :groups:mg:che14.pdf |A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10−15}}, Q. F. Chen et al., REVIEW OF SCIENTIFIC INSTRUMENTS 85, 113107 (2014)
 +          * **Length: 48 cm:**
 +             * {{ :groups:mg:ol-40-9-2112.pdf |8  ×  10−17 fractional laser frequency instability with a long room-temperature cavity}}, S. Häfner et al., Optical Letters Vol. **40**, No. 9 (2015)
 +             * A strontium lattice clock with 3×10^−17 inaccuracy and its frequency: {{ :groups:mg:project_ptb-cavity:a_strontium_lattice_clock_with_310_-17_inaccuracy_and_its_frequency.pdf |}}
 +
 +  * **Cubic geometry:**
 +          * {{ :groups:mg:ol-36-18-3572.pdf |Force-insensitive optical cavity}}, S. Webster et al., Optics Letters Vol. **36**, Issue 18, pp. 3572-3574 (2011)
 +                * PTB took the NPL-design and updated it for a better longterm stability (see Häfner PHD-thesis, Chapter 4.2)
 +
 +  * **Cryogenic single-crystal optical cavities:**
 +        * **Length: 6 cm:**
 +        * **Length: 21 cm:**
 +          * {{ :groups:mg:ol-39-17-5102.pdf |Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s}}, C. Hagemann et al., Optics Letters Vol. **39**, No. 17 (2014)
 +          * {{ :groups:mg:nphoton.2012.217.pdf |A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity}}, T. Kessler et al., Nature Photonics Vol. **6**, 687-692 (2012)
 +          * https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.263202
 +  *  **Mercury (Paris) cavity:** 
 +      *  {{ :groups:mg:physreva.79.053829.pdf |Ultrastable lasers based on vibration insensitive cavities}}, J. Millo et al., PR A **79**, 053829 (2009)
 +      * {{ :groups:mg:ol-37-17-3477.pdf |Laser locking to the Hg199 𝑆01−𝑃03 clock transition with 5.4×10−15/√𝜏 fractional frequency instability }}, J. J. McFerran et al., Optics Letters Vol. **37**, No. 17, 3477-3479 (2012)
 +
 +  *  **Core (Achim Peters):** 
 +      * {{ :groups:mg:private:steffensauer:iqec-2011-i991-2.pdf |}}
 +
 +==== Measurement/characterization techniques of ultra-stable lasers ====
 +          * {{ :groups:mg:project_ptb-cavity:1.4971852.pdf |Characterization of electrical noise limits in ultra-stable laser systems}}, J. Zhang et al., Review of Scientific Instruments 87, 123105 (2016)
 +          * {{ :groups:mg:project_ptb-cavity:ol-42-7-1217.pdf |Phase noise characterization of sub-hertz linewidth
 +lasers via digital cross correlation
 +}}, X. Xie et al., Vol. 42, Issue 7, pp. 1217-1220 (2017)
 +
 +
 +==== Applications ====
 +  * **Transportable cavities:**
 +        * {{ :groups:mg:project_ptb-cavity:single_ion_transportable_optical_atomic_clocks.pdf |Single-ion, transportable optical atomic clocks}}, Marion Delehaye & Clément Lacroûte, Journal of Modern Optics, 65:5-6, 622-639 (2018)
 +  * **Lorentz invariance for the electron:**
 +       * Achim Peters: CORE
 +  * **time:**
 +    * {{ :groups:mg:private:steffensauer:riehle.pdf |}}
 +
 +
 ==== Noise ==== ==== Noise ====
   * [[https://arxiv.org/pdf/1809.10720.pdf#page11|power spectral density of Brownian noise]]   * [[https://arxiv.org/pdf/1809.10720.pdf#page11|power spectral density of Brownian noise]]
 +  * Noise to frequency stability: {{ :groups:mg:private:steffensauer:dawkins.pdf |}}
  
 === Material-Konstanten === === Material-Konstanten ===
   * [[https://arxiv.org/pdf/gr-qc/0504134.pdf|Mechanical Loss I]]   * [[https://arxiv.org/pdf/gr-qc/0504134.pdf|Mechanical Loss I]]
   * [[https://arxiv.org/pdf/1003.2893.pdf|Mechanical Loss II]]   * [[https://arxiv.org/pdf/1003.2893.pdf|Mechanical Loss II]]
 +
 +==== Coating ====
 +  * **Crystaline coatings:**
 +          * {{ :groups:mg:nphoton.2013.174.pdf |Tenfold reduction of Brownian noise in high-reflectivity optical coatings}}, Garrett D. Cole et al., Nature Photonics **7**, 644–650 (2013)
 +            * {{ :groups:mg:private:steffensauer:col13_sup.pdf |Anhang von Cole 2013}}
 +          * {{ :groups:mg:project_ptb-cavity:oe-26-5-6114.pdf |Optical performance of large-area crystalline
 +coatings}}, M. Marchito et al., Opt. Exp. 6114, Vol. 26, No. 5 (2018)
  
 ==== Doppelbrechung in crystallinen Spiegelschichten ==== ==== Doppelbrechung in crystallinen Spiegelschichten ====
Line 30: Line 122:
  
 ==== Transfer-Stabilität ==== ==== Transfer-Stabilität ====
 +  * {{ :groups:mg:06468089.pdf |Providing 10−16 Short-Term Stability of a 1.5-μm Laser to Optical Clocks}}, C. Hagemann et. al., IEEE Transactions on instrumentation and measurement, VOL. 62, NO. 6 (2013)
   * https://arxiv.org/pdf/1902.07012.pdf Transfer-stability von Mehlstäubler zu Siliizum (über zwei Gebäude mit Ethernet-Kabel)    * https://arxiv.org/pdf/1902.07012.pdf Transfer-stability von Mehlstäubler zu Siliizum (über zwei Gebäude mit Ethernet-Kabel) 
-  * {{ :groups:mg:private:steffensauer:guidelines_for_developing_optical_clocks_with10_18fractional_frequency_uncertainty.pdf |}} 
  
-==== Kamm-Kamm-Vergleich/Freuenzkamm-Limitierung ====+==== Kamm-Kamm-Vergleich/Frequenzkamm-Limitierung ====
   * https://arxiv.org/pdf/1910.04261.pdf   * https://arxiv.org/pdf/1910.04261.pdf
  
 ==== Finesse Messung ==== ==== Finesse Messung ====
   * Ringdown von Cole: {{ :groups:mg:private:steffensauer:supermirror-high-performance-near-and-mid-infrared-crystalline-coatings.pdf |}}   * Ringdown von Cole: {{ :groups:mg:private:steffensauer:supermirror-high-performance-near-and-mid-infrared-crystalline-coatings.pdf |}}
 +
 +==== Frequenzverdopplung ====
 +  * S. Herbers: {{ :groups:mg:private:steffensauer:oe-27-16-23262.pdf |}}
  
 ==== Darkmatter ==== ==== Darkmatter ====