Unless otherwise stated, the CMS mirror transmission + loss has been calculated using the measurement of finesse for ATF + CMS mirror cavity. The transmission + loss of ATF mirror is estimated from the measurement of finesse of cavity made from two ATF mirrors. The expected finesse is calculated by assuming a cavity with the same T + L for both mirrors.

The data in the red row is most probably bad due to an impurity on ATF mirror.

Test Results for mirrors from Hannover

Test results for CMS curved mirror 0181 with a 5 cm cavity at different mode positions on the mirror:

Mode Position (microns)	Transmission + Loss (ppm)	Expected Finesse
A (0,0)	16.4	191000
B (-110,938)	8.6	366000
C (-138,-579)	18.1	173000
D (883,-82)	14.9	211000
E (828,800)	8.5	365000

Test results for CMS curved mirror 0154 with a 5 cm cavity at different mode positions on the mirror:

Mode Position (microns)	Transmission + Loss (ppm)	Expected Finesse
A (0,0)	57.6	55000
B (-110,938)	8.5	372000
C (-50,-855)	18	174000
D (883,-100)	15.5	136000
E (-993,-25)	23	202000

Test results for CMS curved mirror 0177 with a 5 cm cavity at different mode positions on the mirror:

Mode Position (microns)	Transmission + Loss (ppm)	Expected Finesse
A (0,0)	122	25000
B (0,800)	10	329000
C (0,-1100)	17	245000
D (938,0)	17.8	239000
E (-745,0)	14	269000

Test results for CMS plane mirror 02703 with a 5 cm cavity at different mode positions on the mirror:

Mode Position (mm)	Transmission + Loss (ppm)	Expected Finesse
A (0,0)	22	137000
B (-1.25,0)	21	150000
C (1.25,0)	21	148000
D (0,1.25)	19	165000
E (0,-1.25)	21	149000

Test results for **CMS plane mirror 3200 with a 5 cm cavity** at different mode positions on the mirror:

Mode Position (mm)	Transmission + Loss (ppm)	Expected Finesse
A (0,0)	20	153000
B (-1.25,0)	19	165000
C (1.25,0)	21	150000
D (0,1.25)	20	156000
E (0,-1.25)	20	157000

Test results for **CMS plane mirror 3200 with a 45 cm cavity** at different mode positions on the mirror:

Mode Position (mm)	Transmission + Loss (ppm)	Expected Finesse
A (0,0)	24.7	127000
B (-1.25,0)	38.6	81000
C (1.25,0)	27.2	115000
D (0,1.25)	24.7	126000
E (0,-1.25)	30.9	101000

Measured results of CMS Plane 3200 and CMS curved mirror 0154 with a 5 cm cavity at different mode positions on the Plane mirror:

Mode Position (mm)	Transmission + Loss (ppm)	Finesse
A (0,0)	23	136000
B (-1.25,0)	21	149000
C (1.25,0)	21	149000

Measured results of CMS Plane 3200 and CMS curved mirror 0177 with a 5 cm cavity at different mode positions on one or both mirrors:

Mode Position (mm)	Transmission + Loss (ppm)	Finesse
A (0,0) on both mirrors	26.6	118000
B (-1.25,0) on plane and (0,0) on	21.5	146000
curved mirror		
C (0,1) on both mirrors	20.4	154000

Measured results of CMS Plane 3200 and CMS curved mirror 0154 with a 45 cm cavity at different mode positions on both mirrors:

Mode Position (mm)	Transmission + Loss (ppm)	Finesse
A (0,0) on both mirrors	35	89000
B (-1.275,0) on both mirror	21.9	143000
C (-1.275, 1.275) on both mirrors	26.6	118000
D (-1.275,- 1.275) on both	23.6	133000
mirrors		

Measured results of CMS Plane 3200 and CMS curved mirror 0177 with a 45 cm cavity at different mode positions on both mirrors:

Mode Position (mm)	Transmission + Loss (ppm)	Finesse
A (0,0) on both mirrors	40	78000
B (0,0.9) on both mirrors	29	108000
C (0.7,0) on both mirrors	36	87000

Repeat Measurement of Combined 5 cm CMS Plane 3200 and CMS curved mirror 0154 cavity at different mode positions on the Plane mirror:

Mode Position (mm)	Transmission + Loss (ppm)	Finesse
A (0,0)	21.5	146000
B (-1.25,0)	22	143000
C (1.25,0)	22.1	142000
D (0,1.25)	21.7	145000
E (0,-1.25)	21.2	148000

Repeat Measurement of Combined 5 cm CMS Plane 3200 and CMS curved mirror 0154 cavity at different mode positions on the both mirrors:

Mode Position (mm)	Transmission + Loss (ppm)	Finesse
A (0,0)	21.7	145000
B (-1,0) on both mirrors	46	68000
C (1,0) on both mirrors	24.7	127000
D (0,1) on both mirrors	21.3	147000
E (0,-1) on both mirrors	22.1	142000

Average 1-R observed in the first set of measurements (13 points) on the three **curved mirrors** (after removing the bad data due to a particle on the ATF plane mirror) was **14.6 ppm** which would give a finesse of **215000**. For the **plane mirrors**, the average 1-R value (from 10 points) was **20 ppm** which would give a finesse of **150000**. As a **combined system** therefore, we would expect the finesse to be above **150000**. However, the finesse values obtained in later measurements were smaller which is probably due to contamination or coating defects coming into the larger mode diameter. Also in later measurements with a 5 cm cavity gave a few points where the finesse was really bad which was not the case in the first round of measurements.