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Considerations on the Measurement of the Stability
of Oscillators with Frequency Counters

Samuel T. Dawkins, John J. McFerran and André N. Luiten

Abstract— The most common time-domain measure of fre-
quency stability, the Allan variance, is typically estimated using a
frequency counter. Close examination of the operation of modern
high-resolution frequency counters shows that they do not make
measurements in the way commonly assumed. The consequence
is that the results typically reported by many laboratories using
these counters are not, in fact, the Allan variance, but a distorted
representation (as pointed out in a previous publication [1]).
We elucidate the action of these counters by consideration of
their operation in the Fourier domain, and demonstrate that the
difference between the actual Allan variance and that delivered
by these counters can be very significant for some types of
oscillators. We also discuss ways to avoid, or account for, a
distorted estimation of Allan variance.

Index Terms— frequency stability, frequency counter, Allan
variance, frequency standards.

I. I NTRODUCTION

T HIS paper considers the issue of characterizing the fre-
quency fluctuations of an oscillator or clock. Let us take

a clock with an output signal of the form

V (t) = A sin(2π y(t)f0 t), (1)

where f0 is the average frequency of the oscillator over
the entire measurement period andy(t) is the instantaneous
fractional frequency of the oscillator. The frequency stability
of this oscillator can be characterized with the commonly
used Allan variance (or its square root, the Allan frequency
deviation), which is defined as [2]:

σ2
A(τ) ≡ 〈1

2
(ȳk+1 − ȳk)2〉, (2)

where we define the kth sample of the normalized frequency,
averaged over some measurement time (sometimes called the
integration time),τ , as

ȳk =
1
τ

∫ tk+τ

tk

y(t) dt. (3)

In practice, the ensemble average in (2) is usually replaced
by a summation ofm consecutive measurements of the kernel
shown inside the angular brackets:

σ2
A(τ) ≈ 1

m

m∑
k=1

(ȳk+1 − ȳk)2

2
. (4)

The integral in (3) corresponds to a single (normalized)
measurement of a traditional frequency counter for a selected
measurement time,τ , usually referred to as the gate time in
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Fig. 1. Each variance weighting function arises from the subtraction of two
consecutive frequency measurements: (a) using a traditional/reciprocal counter
(wA), (b) using a high-resolution counter (wT ), (c) using high-resolution
counters with overlap to get the modified Allan variance (wM ), (d) using the
regression style of counter described in [4] (wR).

counter nomenclature. Following the approach of Rubiola [1],
a single counter measurement over a gate time ofτ can be
written as a weighted integral:

fmeas,k =
∫ ∞

−∞
y(t)f0 wΠ(t− tk) dt = f0 ȳk, (5)

wherewΠ(t) = 1/τ for 0 < t < τ and 0 elsewhere, referred
to in this paper as aΠ-estimator. Similarly, we can rewrite (2)
as:

σ2
A(τ) = 〈

[∫ ∞

−∞
y(t)wA(t− tk) dt

]2

〉, (6)

where we have combined the consecutive integrations and
scaling factors into a single temporal windowing function

wA(t) =

− 1√
2τ

0 < t ≤ τ
1√
2τ

τ < t ≤ 2τ ,
0 elsewhere

(7)

which we will refer to as the Allan variance weighting function
(shown in Fig. 1a).

However, some frequency counters (including those that are
commonly found in many laboratories) do not implement the
frequency measurement as described above; in other words
their operation cannot be modeled by (5). These counters
implement an internal averaging algorithm, which changes the
shape of the temporal windowing function. This results in
a strong suppression of any frequency fluctuations that have
a Fourier frequency significantly higher than the reciprocal
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of the gate time. The intention is to reject noise at these
frequencies to enhance the resolution of the frequency mea-
surement for a given gate time, but it also has very important
consequences when the output of the counter is subsequently
used in the calculation of the Allan variance. In this paper we
consider the effect of this change in counter operation, as well
as how to overcome this limitation. In addition, we consider a
proper treatment for the response of the counter to frequency
fluctuations at frequencies much greater than the reciprocal
of the counter gate time. We note that this paper builds on
Rubiola’s previous work [1] and corrects some misconceptions
presented in that paper.

II. COUNTER FUNCTION

A. High-Resolution Counters

A frequency counter operates by tracking the phase of a
signal by detection of its zero-crossings. The rate that zero-
crossings (and therefore half-cycles) occur with time is used
to estimate the time derivative of the signal phase,φ(t), and
thus deliver the frequency of the signal,f(t), through the
relationship

f(t) ≡ f0 y(t) =
1
2π

dφ(t)
dt

. (8)

A traditional frequency counter estimates the derivative by
counting the (integer) number of half-cycles in a nominated
measurement timeτ . A reciprocal counter avoids the error
associated with partial cycles by altering the measurement time
to coincide with an exact integer number of half-cycles of the
input signal [3], [4]. We note that both of these approaches
effectively measure the change in absolute phase between
the beginning and end of the measurement period, ignoring
the time spacing of the zero-crossings in between. This is
functionally equivalent to theΠ-estimator in frequency space,
which is revealed by substituting (8) into (5):

fmeas,k =
∫ ∞

−∞
f(t)wΠ(t− tk) dt =

1
2πτ

[φ(tk + τ)−φ(tk)].

(9)
Some modern counters improve the resolution of the mea-

surement by using the information contained in the spacing
of the zero-crossings within the measurement time [4]. In
particular, this paper concerns the Agilent 53131A/53132A in
’time arming mode’ or ’digits arming mode’ [5] (or the B+K
Precision 1856D in internal arming mode), which subtracts the
average absolute phase over the first half of the measurement
time (i.e. fort−tk ∈ [0, τ/2]) from the average absolute phase
of the second half (fort− tk ∈ [τ/2, τ ]). In frequency terms,
this equates to a weighted average of a series of traditional
counter integrations, within the single user-selected gate time.
The duration of each integration component is half the user-
selected gate time (in contrast to the full gate time as suggested
in [1]), each delayed from the previous by a small fraction of
τ . These individual frequency measurements are then summed
equally to give rise to a windowing function that is reasonably
well approximated by a triangular weighting function (see
Fig. 2). We will refer to this weighted averaging process as
a Λ-estimator. We note that while both theΠ-estimator (e.g.
used by the Agilent 53131A/2A in external arming mode or

  τ  

2

τ

   
τ

2

t

Fig. 2. The operation of modern high-resolution counters involves multiple
averaging within a single gate time,τ , well approximated by aΛ-estimator.

the Stanford Research Systems SR-620) and theΛ-estimator
deliver the average frequency, their response to fluctuations
with Fourier frequencies higher than the reciprocal of the
gate time is entirely different. Indeed, the advantage of the
Λ-estimator is that it is less sensitive to noise at those Fourier
frequencies.

We emphasize here that the definition of the Allan variance
stipulates the use of theΠ-estimator for the estimation of̄yk in
(6) [2]. Therefore, the use of theΛ-estimator in its place does
not yield the correct estimation of the Allan variance. If we
naively implement the Allan variance algorithm by subtracting
adjacent frequency measurements from one of these modern
frequency counters, then we obtain what we will refer to as
the triangle variance weighting function (see Fig. 1b):

wT (t) =


− 2

√
2

τ2 t 0 < t ≤ τ
2

2
√

2
τ2 (t− τ) τ

2 < t ≤ 3τ
2

− 2
√

2
τ2 (t− 2τ) 3τ

2 < t ≤ 2τ
0 elsewhere.

(10)

We further note (and show in Fig. 1c) that the triangle variance
is not equivalent to the modified Allan variance, as suggested
in [1]:

wM (t) =


− 1√

2τ2 t 0 < t ≤ τ
1√
2τ2 (2t− 3τ) τ < t ≤ 2τ

− 1√
2τ2 (t− 2τ) 2τ < t ≤ 3τ

0 elsewhere.

(11)

For interest, we have also derived (see Fig. 1d) the weighting
function for a counter using a linear regression technique [4]:

wR(t) =


3
√

2
τ3 t(t− τ) 0 < t ≤ τ

− 3
√

2
τ3 (t− τ)(t− 2τ) τ < t ≤ 2τ

0 elsewhere.

(12)

For reasons of brevity we have not considered this type of
counter further, but note that it can be analyzed in the same
way as the other counter algorithms.

B. Fourier Analysis

The action of the different temporal windowing functions
may be more easily comprehended in the Fourier domain.
Using the Power theorem [6], we can equivalently express the
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Fig. 3. Fourier transform of the weighting function for (a) the Allan variance
measured with a traditional reciprocal counter, (|WA(f)|: solid line), (b)
the triangle variance measured with a high-resolution counter with internal
averaging, (|WT (f)|: dotted line), and (c) the modified Allan variance,
(|WM (f)|: dashed line).

action of the temporal weighting functions as an integration
in the Fourier domain:

σ2(τ)=〈
[∫ ∞

−∞
w(t)y(t)dt

]2

〉

=〈
[∫ ∞

−∞
W (f)Y ∗(f)df

]2

〉, (13)

where w(t) is an arbitrary temporal windowing function
andW (f) =

∫∞
−∞ w(t)e−ı2πftdt is its corresponding Fourier

transform. Here,Y (f) is the Fourier transform of the instan-
taneous fractional frequencyy(t), which is related to the more
familiar power spectral density of the fractional frequency,
Sy(f) [2]. In fact, we demonstrate in the appendix that (13)
can be rewritten in terms of the one-sidedSy(f) as

σ2(τ) =
∫ ∞

0

Sy(f)|W (f)|2df. (14)

It is thus clear that the squared magnitude of the Fourier
transform of the temporal weighting function reveals the
spectral sensitivity of the particular variance. We now consider
in detail the Fourier transform applied to the three variances
of interest in this paper; the Allan variance weighting function
wA(t)

|WA(f)| =
√

2 sin2(πfτ)
πfτ

, (15)

the triangle variance weighting functionwT (t)

|WT (f)| =
√

32 sin2(πfτ
2 ) | sin(πfτ)|

(πfτ)2
, (16)

and finally, for completeness, the modified Allan variance [7]
weighting functionwM (t)

|WM (f)| =
√

2 sin2(πfτ)| sin(πfτ)|
(πfτ)2

. (17)

Fig. 3 shows|WA(f)|, |WT (f)| and |WM (f)|, which reveals
the rapid decrease of sensitivity at high frequencies of the
triangle variance and the modified Allan variance, as compared
with the Allan variance.
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Fig. 5. Fourier transform of the weighting functions for (a) the Allan variance,
|WA,τd

(f)| (solid line), (b) the triangle variance,|WT,τd
(f)| (dotted line),

and (c) the modified Allan variance,|WM,τd
(f)| (dashed line), all with a

dead-time of0.2 τ .

C. Consideration of Dead-time

In practice when a single frequency counter is used to make
a sequence of frequency measurements there is some time be-
tween consecutive frequency samples needed for processing. It
is possible to avoid significant measurement dead-time through
the use of two coordinated counters, but many measurements
will involve some amount of dead-time. The effect of this
dead-time on the variance calculation is easily modeled by
inserting a temporal gap,τd, between subtracted counts when
deriving the weighting functions (see Fig. 4). The weighting
functions in the Fourier domain then become:

|WA,τd
(f)| =

√
2 | sin(πfτ)| | sin(πf(τ + τd))|

πfτ
, (18)

|WT,τd
(f)| =

√
32 sin2(πfτ

2 ) | sin(πf(τ + τd))|
(πfτ)2

, (19)

and

|WM,τd
(f)| =

√
2 sin2(πfτ) | sin(πf(τ + τd))|

(πfτ)2
. (20)

These functions are plotted in Fig. 5 for a dead-time of0.2 τ .
The most obvious effect of dead-time is the down-shift in
frequency of the nodes of zero sensitivity in the spectrum.

D. Implications

From the preceding sections we see that the naive ap-
plication of the Allan variance algorithm to a sequence of
measurements generated by aΛ-type frequency counter does
not yield the intended result. The magnitude of the error
depends strongly on the nature of the noise in the signal
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TABLE I

COMPARISONS OFALLAN VARIANCE (TRADITIONAL COUNTER), TRIANGLE VARIANCE (HIGH-RESOLUTION COUNTER) AND MODIFIED ALLAN

VARIANCE RESULTING FROM CHARACTERISTIC NOISE. HERE, PM STANDS FOR PHASE MODULATED ANDFM STANDS FOR FREQUENCY MODULATED.

(NOTE: A CUTOFF FREQUENCY, fH , IS INTRODUCED FOR THEALLAN VARIANCE OF WHITE PHASE NOISE AND FLICKER PHASE NOISE TO AVOID AN

INFINITE RESULT. WE ALSO IGNORE THE SMALL SINUSOIDAL TERM.)

Noise Type Sy(f) Allan (σ2
A) Modified Allan Triangle

White PM h2f2 3 fH
4 π2 h2τ -2 3

8 π2 h2τ -3 2
π2 h2τ -3

= σ2
A(τ) = 1

2 fHτ
σ2
A(τ) = 8

3 fHτ
σ2
A(τ)

Flicker PM h1f
1.038+3 ln(2 πfHτ)

4 π2 h1τ -2 3 ln( 256
27 )

8 π2 h1τ -2 6 ln( 27
16 )

π2 h1τ -2

= σ2
A(τ) = 3.37

3.12+3 ln πfHτ
σ2
A(τ) = 12.56

3.12+3 ln πfHτ
σ2
A(τ)

White FM h0
1
2
h0τ -1 1

4
h0τ -1 2

3
h0τ -1

= σ2
A(τ) = 0.50 σ2

A(τ) = 1.33 σ2
A(τ)

Flicker FM h-1f -1 2 ln(2) h-1 2 ln( 3 311/16

4
) h-1 (24 ln(2)− 27

2
ln(3)) h-1

= σ2
A(τ) = 0.67 σ2

A(τ) = 1.30 σ2
A(τ)

Random Walk FM h-2f -2 2
3

π2 h-2 τ 11
20

π2 h-2 τ 23
30

π2 h-2 τ

= σ2
A(τ) = 0.82 σ2

A(τ) = 1.15 σ2
A(τ)

Frequency Drift (̇y = Dy) - 1
2
D2

yτ2 1
2
D2

yτ2 1
2
D2

yτ2

TABLE II

FIRST ORDER ERROR, δ, IN THE ALLAN , TRIANGLE AND MODIFIED

ALLAN VARIANCES CAUSED BY THE INCLUSION OF DEAD-TIME . THE

VARIANCE WITH DEAD -TIME , σ2
τd

, IS THE ORIGINAL VARIANCE, σ2 ,

AUGMENTED BY δ: σ2
τd

' (1 + δ) σ2 . (*FOR THE MOST DIVERGENT

NOISE, THE ALLAN VARIANCE HAS A COMPLICATED DEPENDENCE ON THE

CUTOFF FREQUENCY, fH ; HOWEVER, FOR SIMPLICITY WE GIVE THE

MAXIMUM VALUE .)

Noise Type Allan Modified Allan Triangle

White PM 2
τd
τ

* −0.33
τd
τ

0

Flicker PM 2
τd
τ

* 0.67
τd
τ

0.43
τd
τ

White FM 0 0 0

Flicker FM τd
τ

1.33
τd
τ

0.62
τd
τ

Random Walk FM 1.50
τd
τ

1.67
τd
τ

1.30
τd
τ

Frequency Drift 2
τd
τ

2
τd
τ

2
τd
τ

being measured. Table I compares the Allan variance, triangle
variance and modified Allan variance resulting from several
common characteristic noise types. For an arbitrary signal,
however, Greenhall [8] has shown that it is not possible to
derive the power spectral density from the Allan variance; this
is equally true for the triangle variance calculation. Therefore,
it is not possible to manipulate data taken from aΛ-type
counter to yield the Allan variance that would have been
measured by aΠ-type frequency counter, except for the
special case where the shape ofSy(f) is already known. The
corrections for listedSy(f) are also presented in Table I.
Where the measurement involves a significant dead-time, a
further correction may be necessary, and we include Table II
for convenience. We note that the Allan variance values are
consistent with the bias functions tabulated by Barnes and
Allan [9].

The easiest way to be sure of obtaining the true Allan
variance is to ensure that aΠ-type counter is used. Unlike
in [1], where the averaging of a series ofΛ-type counter

2
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2τ
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2
√

2τ

t

wA
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Fig. 6. AveragingΛ-counts before calculating the Allan variance produces
a triangularly modulatedΠ-count. Here we show four averages (N = 4).
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Fig. 7. The variance calculated by averaging consecutiveΛ-counts (b)
approximates the Allan variance (a) at low frequencies but increases sensitivity
around N

τ
(hereN = 10).

measurements is assumed to approximate theΠ-estimator,
we find that a series ofΛ-estimators produces aΠ-estimator
modulated by a triangle wave (see Fig. 6). For a number of
samples,N , the variance produced by this method approaches
the Allan variance at frequencies comparable to the reciprocal
of the gate time, but introduces sensitivity nearN times the
reciprocal of the gate time (see Fig. 7).

A second alternative is to use a spectrum analyzer to
generate the frequency noise,Sy(f), and then calculate the
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GPIB Controller
(NI PXI 8186)

Counter
(Agilent 53131A)

Synthesizer
(Agilent 33120A)

Counter
(Agilent 53132A)

TEST SIGNAL
(Agilent 33120A)

External Arming

Increment Frequency

Frequency Count

FM Signal

Time Arming

Fig. 8. Experimental setup to measure the windowing function with negligible
dead-time. The counters take measurements alternately, armed either by
computer instruction (time arming) or a rising edge (external arming).

Allan variance by combining (14) and (18):

σ2
A(τ)=

∫ ∞

0

Sy(f)
2 sin(πfτ)2 sin(πf(τ + τd))2

(πfτ)2
df. (21)

To derive the triangle variance, we combine (14) with (19) to
get:

σ2
T(τ)=

∫ ∞

0

Sy(f)
32 sin(πfτ

2 )4 sin(πf(τ + τd))2

(πfτ)4
df. (22)

These integral forms are easily calculated because theSy(f)
produced by the spectrum analyzer is already discretized into
frequency bins. Accordingly, the variance in (14) becomes a
summation overN bins:

σ2(τ) =
N∑

n=1

[Sy,n

∫ fn+1

fn

|W (f)|2df ], (23)

where Sy,n is the power spectral density calculated by the
spectrum analyzer for thenth bin. We also note that the ratio of
the Allan and triangle Fourier transforms takes the particularly
simple form, which is independent of dead-time:

WT,τd
(f)

WA,τd
(f)

=
tan(πfτ

2 )

(πfτ
2 )

= tanc(
πfτ

2
). (24)

III. R ESULTS

A. Model Testing

We tested our model with two types of commonly used
counters that we had available (Agilent 53131A/53132A).
They were supplied by a synthesizer (shown schematically
in Fig. 8) with a carrier signal that was modulated at a single
well-defined frequency:

Vmod = V0 sin(2πfct + M sin(2πfmt)). (25)

The resulting set of contiguous frequency measurements (100s
of data at each modulation frequency) were then applied to
(2) to provide a measure of the response of the variance to
that modulation frequency,fm. Repetition of the procedure
for a range offm allows us to generate a plot of the spectral
sensitivity of the windowing function,w(t), as a function of
frequency. In fact, this measurement gives the Fourier sine
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Fig. 9. The Allan variance spectral window,|WA(f)|, as measured with the
counters in external arming mode (dots) compared with that calculated with
(15) (line).
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Fig. 10. The triangle variance spectral window,|WT (f)|, as measured with
the counters in time arming mode (dots) compare with that calculated with
(16) (line). Inset: Magnification of the cusp atf = 1

τ
.

transform, so we scale the result by
√

2
M to derive the general

Fourier transform, normalized by the modulation index,M .
The result obtained when using external gating (i.e. the Allan
variance spectral window|WA(f)|) is compared with the
theoretical function from (15) in Fig. 9. Similarly, Fig. 10
shows that the measured spectral window of the counter while
in time arming mode (i.e. the triangle variance spectral window
|WT (f)|) agrees with (16). Finally Fig. 11 shows that the
expressions given in (18) and (19) including dead-time also
hold, and that the calculated sensitivity functions are in excel-
lent agreement with the measurements. The results verify that
when modern enhanced resolution counters are used to gather
frequency data, they generate the triangle variance rather than
the intended Allan variance. Experimental verification of the
cusp on Fig. 10 at a frequency of1

τ , which is not present on
either the Allan or modified Allan variance spectral window,
is a prominent visual indication that the triangle variance is
different from both.

We note that measurements deviate from the model pre-
diction where the modulation frequencies are close to a
multiple of 1

2 τ . At such frequencies, the modulation and the
measurement rate maintain relative phase, which compromises
the estimation of the ensemble average in (2).

B. Counter Response to Real Oscillators

We have tested the effect of the triangle variance algorithm
on three different types of oscillator. We first synthesized
signals that were dominated by white phase noise and white
frequency noise to approximate the characteristic noise of
an active hydrogen maser and a primary frequency standard
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Fig. 11. Experimental verification of (a) the Allan variance spectral window,
|WT,τd

(f)|, with dead-time of 5% ofτ and (b) the triangle variance spectral
window, |WT,τd

(f)|, with dead-time of 2.6% ofτ .

respectively. In all cases we applied a low pass filter of 50 kHz
to provide a well-defined cut-off frequency,fH , as is required
for the interpretation of Tables I and II. These signals were
used, in turn, to simultaneously drive two counters - one
in external arming mode and another in time arming mode.
Fig. 12 shows the white phase noise dominated signal in the
Fourier domain, as measured by an FFT spectrum analyzer,
and the corresponding Allan and triangle variances measured
by the respective counters (shown as error bars). The lines
on Fig. 12 are calculated directly from the frequency noise
power spectral density as per (23), using an upper integration
limit of 50 kHz. Fig. 13 shows the equivalent results for
the white frequency noise dominated signal. Together these
figures demonstrate that for conventional oscillators that are
dominated by white frequency noise, the difference between
the two types of measurement is small, but for an oscillator
with more rapidly diverging frequency noise, the difference
can be very significant.

We also tested the effect of this measurement on an optical
frequency synthesizer we have built at UWA [10]. Indeed, we
first noticed the importance of the counter gating mode when
making Allan variance measurements of the synthesizer’s
repetition rate signal. In this case, due to the limited bandwidth
of the frequency control transducer (∼30 kHz), the signal
exhibits a strong increase in the frequency fluctuations with
Fourier frequency (see Fig. 14), which is similar to flicker
phase noise. The Allan variance shows a marked difference in
its behavior in comparison with the triangle variance, which is
due to a stronger rejection of the noise at high frequencies. We
predict that some frequency standards based on macroscopic
resonators will produce a similar discrepancy. The frequency
fluctuations of such oscillators can be dominated by environ-
mental sensitivity at acoustic frequencies [11], [12], which will
contribute more strongly to the triangle variance than the Allan
variance.

IV. D ISCUSSION

Despite the existence of several alternative techniques for
characterizing frequency stability, such as the modified Allan
variance and the Total variance [13], the Allan variance has re-
mained the most common measure of frequency stability. This
is most likely due to its simplicity and ease of implementation.

We suggest that, instead of viewing the effect of counter
averaging as a hindrance, the resulting triangle variance be
put forward as a possible new measure for characterizing
frequency stability. It shares two of the advantages of the
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Fig. 12. The left panel (a) shows synthesized noise, dominated by white
phase noise, which was used in (23) to generate the Allan variance (solid
lines) and the triangle variance (dotted lines) in the right panel (b). Also
shown in (b) are measurements made on the same source with an externally
armed counter (dots) and a time-armed counter (squares).

10
2

10
0

10
-4

10
6

10
-2

10
4

10
-6

10
-2

Frequency (Hz)

(a)

F
re

q
u
en

cy
N

o
is

e
(H

z2
/
H

z)

10
-18

10
210

-1

10
-22

10
0

10
1

10
-20

Integration Time (s)

(b)

V
a
ri

a
n
c
e
,

σ

Fig. 13. The left panel (a) shows synthesized white frequency noise,
which was used in (23) to generate the Allan variance (solid lines) and the
triangle variance (dotted lines) in the right panel (b). Also shown in (b) are
measurements made on the same source with an externally armed counter
(dots) and a time-armed counter (squares).

modified Allan variance; in particular, being convergent in
response to very divergent noise (up toSy(f) ∝ f3), and
secondly the ability to distinguish between white phase noise
and flicker phase noise because of their different dependence
on the integration time (1τ3 and 1

τ2 respectively). Furthermore,
it offers the same ease of implementation as the Allan variance,
since it is directly delivered by some counters in their default
high resolution mode. This is in contrast to the modified
Allan variance which requires additional computational effort.
Perhaps most importantly though, when the counters are
operating in their most sensitive mode, there is no choice but
to accept frequency measurements that have been filtered in
this way. Thus we suggest that the triangle variance provides
a useful measure of frequency stability that is closely related
to the traditional Allan variance, whilst also exploiting the
highest sensitivity mode of modern counters.

V. CONCLUSION

We have demonstrated that the usual method of estimating
the Allan variance of an oscillator is incorrect with many
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with an externally armed counter (dots) and a time-armed counter (squares).
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modern high-resolution frequency counters. The internal av-
eraging processes used by such counters delivers reduced
sensitivity to frequency fluctuations at high Fourier frequencies
(as compared with the reciprocal of the gate time), resulting
in an incorrect estimate of the Allan variance as it has been
defined. The error is moderate (33 % of the true value) for
oscillators dominated by white frequency noise, but it can
be of great significance (larger than an order of magnitude)
for some sources, especially those dominated by white phase
noise. Either one must take care to avoid the error in the
measurement process or, alternatively, consider the difference
meaningful by incorporating this triangle variance into a new
definition of frequency stability.

APPENDIX

In this appendix, we demonstrate the analysis to go between
(13) and (14). We follow the form of the proof presented in
Appendix I in Barnes [2], except we include any variations
in the definition of the variance, such as the consideration of
multiple samples or dead-time, within an arbitrary weighting
function w(t). Let us start with the first half of (13) and re-
write the squared term as the product of two independent
integrals and manipulate:

σ2(τ)=〈[
∫ ∞

−∞
w(t)y(t)dt]2〉

=〈
∫ ∞

−∞
w(t′)y(t′)dt′

∫ ∞

−∞
w(t′′)y(t′′)dt′′〉

=〈
∫ ∞

−∞

∫ ∞

−∞
w(t′)w(t′′)y(t′)y(t′′)dt′dt′′〉

=
∫ ∞

−∞

∫ ∞

−∞
w(t′)w(t′′)〈y(t′)y(t′′)〉dt′dt′′ (26)

We then use the definition of the autocorrelation function and
the Wiener-Khinchin theorem for the one-sidedSy(f) to get
the relationship:

〈y(t′)y(t′′)〉=Ry(t′ − t′′)

=
∫ ∞

0

Sy(f) expı2πf(t′−t′′) df. (27)

Note that this requires that the integral
∫∞
0

Sy(f)df exists
which can be forced by introducing a high frequency cutofffH

(also required for the calculation of Allan variance for white
phase noise and flicker phase noise as per Table I). Substituting
(27) into our variance expression and re-arranging yields:

σ2(τ)=
∫ ∞

−∞

∫ ∞

−∞
w(t′)w(t′′)

∫ ∞

0

Sy(f)eı2πf(t′−t′′)dfdt′dt′′

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

w(t′)w(t′′)Sy(f)eı2πf(t′−t′′)dt′dt′′df

=
∫ ∞

0

Sy(f)
∫ ∞

-∞
w(t′)eı2πft′dt′

∫ ∞

-∞
w(t′′)e-ı2πft′′dt′′df.

The final line above reveals the familiar form of the Fourier
transform and we can attain the result by knowing thatW (f)

is Hermitian becausew(t) is a real function:

σ2(τ)=
∫ ∞

0

Sy(f)W (−f)W (f)df

=
∫ ∞

0

Sy(f)W ∗(f)W (f)df

=
∫ ∞

0

Sy(f)|W (f)|2df. (28)
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