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Analytic Expressions for the Reflection Delay, 
Penetration Depth, and Absorptance of 

Quarter-Wave Dielectric Mirrors 
Dubravko I .  Babic and Scott W .  Corzine 

Abstract-In this paper we analyze the operation of high-re- 
flectivity quarter-wave (QW) dielectric mirrors at the band-stop 
center (Bragg) frequency, relevant for the design of small-cav- 
ity optoelectronic structures. We discuss the mirror penetra- 
tion depth from the standpoints of reflection delay and energy 
storage in the quarter-wave mirrors and derive exuct analytic 
expressions for the penetration depth at the mirror center fre- 
quency based on both definitions. We show that, in general, the 
two models yield different expressions for the penetration depth, 
but for certain practical cases the difference is negligible. We 
also present the mathematical analysis and expressions for the 
absorptance and the peak reflectivity of a dielectric mirror with 
weak material absorption. The quarter-wave mirrors have typ- 
ically been analyzed using coupled-wave theory, which applies 
to mirrors with small index differences, or by exact numerical 
calculation using the transmission matrix approach. In this pa- 
per we derive expressions for the penetration depth and mirror 
reflection delay that are valid for arbitrary material refractive 
index combinations and any number of layers, and are there- 
fore applicable both for semiconductor and amorphous dielec- 
tric mirrors. The use of our results is illustrated for a typical 
vertical cavity surface-emitting laser structure. 

1. INTRODUCTION 
HE realization of high-reflectivity laser mirrors typi- T cally involves the use of one or more dielectric 

quarter-wave stacks to achieve a desired reflectivity and 
bandwidth [ l ] ,  [2]. Due to the distributed nature of a 
quarter-wave (QW) stack, these mirrors exhibit phase dis- 
persion and a finite delay upon reflection. The dispersion 
is responsible for pulse broadening and distortion [2], 
whereas the reflection delay adds to the laser cavity round- 
trip time. The storage of electromagnetic energy in a dis- 
tributed reflector is also a factor of interest in the case of 
small-cavity structures where the cavity volume and the 
cavity round-trip time are of comparable magnitude as the 
mirror storage and the reflection delay. The primary ex- 
amples here are vertical cavity surface-emitting lasers 
(VCSEL) [3] and vertical Fabry-Perot modulators [4]. It 
has been common practice [5 ]  to account for both the re- 
flection delay time and the energy storage in distributed 
laser mirrors by defining a quantity called penetration 
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I 
depth as the depth inside the mirror at which the optical 
pulse appears to reflect, or the energy falls of to 1/e of 
its initial value. The sum of the physical cavity length and 
the mirror penetration depth gives the effective cavity 
length. The penetration depth has typically been calcu- 
lated using coupled-wave theory (CWT) [6], [7], which 
applies in the cases when the difference in the mirror ma- 
terial refractive indexes is small. Except for the exact nu- 
merical calculation using the transmission matrix ap- 
proach [8], [9] there has not been any simple way of 
predicting the reflection delay and the energy penetration 
for mirrors involving materials with arbitrarily large re- 
fractive index differences. Furthermore, it has not been 
clearly stated that the two definitions of the penetration 
depth: the definition by reflection delay and by energy 
storage, in fact lead to two different penetration depths. 

In this paper we discuss these definitions and derive 
exact analytic expressions for both the reflection delay and 
the energy penetration depth of a quarter-wave mirror 
(QWM) at the mirror center frequency that is valid for 
arbitrary large refractive index differences and number of 
layers. We will also use the energy penetration depth con- 
cept to determine a first-order linear approximation for the 
reduction of the mirror peak reflectivity of the QWM as a 
function of the mirror material parameters and the number 
of layers. The obtained expression can be applied in the 
limit of small loss. 

11. BACKGROUND 
The term quarter-wave stacks encompasses a large 

number of structures (also referred to as multisection 
quarter-wave transformers) that are used in a variety of 
band-limited impedance transformation applications [ 101, 
[ 111. For applications in optics these structures are real- 
ized as quarter-wave layered media with the section 
impedances varied by using nonmagnetic materials with 
different refractive indexes. The most common uses here 
are narrow band antireflective (AR) coatings and high- 
reflectivity (HR) mirrors. The quarter-wave section re- 
fractive indices of an AR coating are typically made to 
vary monotonically, typical examples being the binomial 
and Chebyshev transformers [lo], [ 111. A high-reflection 
coefficient at the design frequency can be achieved by 
using a structure in which the refractive index of every 
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subsequent layer alternates in magnitude. In this way all 
of the reflected waves interfere constructively at the de- 
sign frequency and produce a high-reflection coefficient 
with a phase exactly zero or P. Very high peak reflection 
coefficients (> 99%) can be achieved practically in this 
manner even though it is not theoretically possible to 
achieve unity reflection coefficient with a finite number of 
layers [6]. The structure that is most commonly referred 
to as the QWM is a multisection quarter-wave structure 
in which the section refractive indexes alternate between 
two fixed values: high nH and low nL. Due to its periodic 
nature the QWM structure is the most common realization 
of HR coatings in optics and is of primary interest in this 
paper. 

In semiconductor optoelectronics, HR reflectors appear 
as in-plane and vertical structures. In-plane reflectors 
constitute distributed feedback and distributed Bragg re- 
flector lasers [5] and are typically fabricated by e-beam 
lithography and holographic means. The resulting refrac- 
tive index variation in these structures is typically graded 
and very weak, and can be efficiently analyzed by pertur- 
bation methods such as CWT [6], [7]. The fabrication of 
vertical HR reflectors involves deposition of quarter-wave 
layers of alternating refractive indexes by epitaxial 
growth, evaporation, or plasma deposition. The large va- 
riety of materials used for mirror fabrication yields a large 
range of available refractive index values. Semiconductor 
mirrors fabricated by crystal growth techniques (MBE, 
CBE, MOVPE) typically have abrupt refractive index 
variations across the section boundaries (even though they 
may be graded [12]) and the materials yield refractive in- 
dexes in the range between 3.0 and 3.6. The fractional 
bandwidth (Ao/wo) of a QWM depends on the refractive 
indices of the two materials used [ 131 : 
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Fig. 2. Calculated reflection delay and dispersion of the quarter-wave 
mirror shown in Fig. 1. (1) 

and hence the largest A w / o o  for these epitaxial mirrors is 
approximately 10%. Evaporation and plasma (PECVD, 
sputtering) deposition techniques offer a wide range of in- 
sulating materials with lower refractive indexes: from 
n - 1.4 (MgF2, SO2) to n - 2.35 (ZnO, Ta02), and 
high index materials, such as amorphous semiconductors 
(n - 3.5). The fractional bandwidths of amorphous mir- 
rors may exceed 30%. In the case of such large refractive 
index differences, one needs to solve for the reflectivity 
spectrum exactly, most commonly by the transmission 
matrix approach [8], [9]. 

The phase properties (dispersion and delay) of quarter- 
wave mirrors have been studied extensively for applica- 
tions in high-speed lasers [2], [14]-[16]. At the center of 
the mirror band-stop the dispersion is zero and the reflec- 
tion delay is at a minimum. Both quantities increase in 
magnitude for frequencies away from the center. The re- 
flectivity amplitude and phase spectra of a Si3N4/Si 
quarter-wave mirror are shown as an example in Fig. 1. 
Fig. 2 shows the reflection delay and dispersion depen- 

dence on frequency in the neighborhood of the band-stop 
frequency. The modulation of semiconductor lasers pro- 
duces optical bandwidths that are very small compared to 
typical QW mirror bandwidths, and hence we need not 
consider the dispersion as the limiting parameter in the 
high-speed operation. In VCSEL, a more severe effect on 
the operating conditions results from the shift of the laser 
emission mode due to temperature and fabrication toler- 
ances to a region of longer delay time and lower reflectiv- 
ity. The rate of change in both of these parameters de- 
pends on the amount of mirror dispersion and bandwidth 
[ 141 : narrow bandwidth mirrors inherently have very fre- 
quency-dependent phase characteristics. The allowed laser 
emission mode drift will hence place the most stringent 
requirements on the spectral response of the QW mirror. 
The devices of our primary interest are vertical cavity sur- 
face-emitting lasers that utilize both semiconductor and 
amorphous dielectric mirrors, hence this report is in- 
tended to provide quarter-wave mirror design tools for this 
application. 
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111. REFLECTION DELAY AND PHASE PENETRATION 
DEPTH L, 

The quarter-wave mirror exhibits a complicated phase 
and amplitude spectrum due to its distributed (multire- 
flection) nature. The most practically useful portion of the 
mirror spectrum is at or in the immediate neighborhood 
of the antiresonance frequency, i.e., the center of the 
principal band-stop region. The antiresonance consists of 
the fact that the round trip phase within each layer in the 
mirror at that frequency equals an odd multiple of a. The 
center frequency is also referred to as the Bragg fre- 
quency. The spectrum is periodic: the high-reflectivity 
stop band repeats every odd multiple of the Bragg fre- 
quency. For a lossless mirror, the maximum value of the 
reflectivity occurs at the stop-band center and can be cal- 
culated using well-known quarter-wave transformation 
formulas [6]. We describe here the derivation of the re- 
flection delay at the center frequency for the QWM's with 
no material loss or dispersion. We assume that the pres- 
ence of mirror material loss affects the laser operation pre- 
dominantly through the reduction of the peak reflectivity, 
rather than the variation of the reflection delay. The re- 
duction of peak reflectivity as a function of material loss 
will be discussed in Section V .  The frequency and time 
response of dielectric mirrors is described by its complex 
amplitude reflectivity spectrum: 

f(w) = r(w)eje(w) (2) 

where r ( w )  and e(@) are real functions. (The tilde - de- 
notes a phasor). The QWM is a passive linear network 
and, as such, exhibits a real impulse response. It is a 
straightforward task to show, using the inverse Fourier 
transform, that for a real impulse response the amplitude 
spectrum r ( w )  is an even function, whereas the phase 
e(@) is an odd function of the frequency. For a lossless 
mirror with no material dispersion this is also true around 
the center frequency wo where, as a consequence, the 
phase characteristic has an inflexion [9], seen in Fig. 1. 
For continuous signals at frequency wo the QWM can be 
characterized by two parameters: the reflectivity r ( w o )  and 
the phase, which for a QW stack is either zero or a at the 
center frequency. When the carrier is modulated, both the 
reflected signal amplitude and the phase are determined 
by the portion of the mirror reflectivity spectrum that 
overlaps with the modulated signal spectrum. As Figs. 1 
and 2 show, for very narrow modulation bandwidths close 
to the center of the mirror band stop the relevant portion 
of the spectrum can be assumed to have uniform ampli- 
tude and a linear phase: 

(3) f = - j (w -wo) ,  

where r is the rejection delay at frequency oo given by 

(4) 

The quantity r is the time by which an input pulse will be 
delayed upon reflection [ 141, also called group-delay time. 

The fixed-phase term €)(coo) present in (2) has been in- 
cluded into the amplitude r ( w o )  of (3) for simplicity of 
upcoming mathematical derivations. The sign of r ( w o )  can 
then take both positive and negative values depending on 
the orientation of the stack. (The phase of the QW stack 
at the Bragg frequency can be determined from the phase 
of the first reflection, since all of the reflections are in 
phase at the center frequency. Refractive index sequence 
HL at the first interface gives I'(wo) > 0, whereas the 
opposite sequence LH yields I'(wo) < 0.) 

A .  Derivation of the Rejection Delay r 
In order to calculate reflection delay T we will derive a 

recursion relation between the reflection delay r, of an 
m-section stack and the group delay T ,  - of an (m - 
1)-section stack. Let Z, - be the input impedance of the 
(m - 1)-section structure shown in Fig. 3 .  We now pro- 
ceed building the stack by adding a quarter-wave layer to 
the top. The refractive index of the added layer must be 
of the proper relative magnitude so that the indexes of the 
overall structure alternate. (It is irrelevant which of the 
two material indexes is being used, as long as the phase 
is properly adjusted). Once the refractive index of the m th 
layer is specified, by knowing Z, - one can easily deter- 
mine rm - 1:  the reflectivity of the m - 1-layer stack as 
seen from within the added quarter-wave layer, and Z,n: 
the input impedance of the m-layer stack. With the next 
quarter-wave layer added we can determine the reflectiv- 
ity rm and Z,, + and so on. The reflectivities I'm and I?, - , 
are then related by 

r, - fm-le--j2WAT 
1 - r,f, - e -j2wA7 

f, = - 

where r,, is the amplitude reflectivity of the interface be- 
tween the quarter-wave layers m + l and m, and AT is 
one-quarter period time 4 f AT = 1 (f is the band-stop 
center frequency). Using (3) we express rm and I?, - I : 

We now simplify ( 5 )  using a substitution originally due 
to Yan [17], [20] and discussed in the Appendix. Know- 
ing that (r,( < 1 and that tanh ( z )  is analytic along the 
real axis we set 

s, = tant-' (r,) S, = tant-l (-fme-j2WAT >. (7) 

Using the tanh (z) addition rule (A3) we obtain: 

F, = -tant (s, + S,-J. (8) 

By differentiating (6) and (8) with respect to U ,  and eval- 
uating at wo, we obtain 

(9) 
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Fig. 3 .  An m - I-section quarter-wave stack with a single quarter-wave 
layer added on top. 

Here we have used the fact that r m ( w )  has a maximum at 
wo and that w0A7 = 7r/2. Equating (9) and (10) we obtain 
a recursion relation for the reflection delay r,  in terms of 
the delay T,,, - I and the associated amplitude reflectivities 
r,,, and r,,l - I : 

Ym 7,n = Y m  - l(7m - 1 + 2A7) (1 1) 

where factors yi are given by: 

For m = 0, the structure reduces to a single interface be- 
tween the incident and exiting medium: There is no re- 
flection delay and we can set ro = 0. The reflection delay 
of a single-layer structure r1 can now be found from (11). 
By repeated application of (1 1) we can similarly find the 
reflection delay of a QWM of an arbitrary thickness. The 
recursion relation (1 1) leads to the sum: 

m - 1  

C Yi 1 i = O  

Equation (13) is exact for any multisection quarter-wave 
transformer at the design frequency, as we have not in any 
way specified the individual quarter-wave section imped- 
ances. In the case of matching transformers, the value of 
r,,, is ideally zero, whereas the ri ( i  < m) are, in general, 
nonzero. Equation (1 3) then implies that the reflection de- 
lay time is infinite. The physical interpretation would be 
that the signal never returns, which is indeed the goal of 
perfect matching. It is possible to generalize this deriva- 
tion, starting with ( 5 ) ,  to arbitrary structures that involve 
both quarter-wave and half-wave layers. However, in this 
paper we concentrate only on the QWM structure and re- 
fer the reader to reference [20] for a more detailed treat- 
ment of the tanh substitution and its application in cal- 
culating reflectivities of more complex quarter- and half- 
wave structures. 

For the case of a QWM structure (13) can be reduced 
to an explicit relation due to the simplicity of the relations 
for the partial reflectivities ri, and hence the factors yi. 
The phase of the reflectivity of every subsequent quarter- 
wave section alternates between 0 or n, and therefore no 

generality will be lost by setting 

We show in the Appendix that yi can be written as 

where bi is the product of the low/high refractive index 
ratios for all interfaces in an i-section stack. Fori sections 
there are i + 1 interfaces and b, is given by 

b i = j o  (2). (16) 

Expression (1 3) becomes a sum of two series 

.m 

I - - h  I 

Coefficients bi are all different but can be expressed in a 
simple way using three parameters: a, p ,  q,  and the num- 
ber of sections i .  Parameters a ,  p ,  and q are refractive 
index ratios of the three types of interfaces that charac- 
terize the mirror. All of the ratios are taken as low/high, 
i.e., a, p ,  and q are real numbers smaller than 1. 

q = -  nL I p = -  nL ( O < i < m )  a = -   LE * (18) 
nHI nH  HE 

Factor q is the ratio of the refractive indexes at the inter- 
face between the incident medium (subscript I) and the 
first QWM section, factor a is the ratio of the refractive 
indexes at the lust QWM section and the exit medium 
(subscript E ) ,  and factor p is the ratio of the refractive 
indexes of the two materials that constitute the QWM 
structure. Using (16) and (18) we find that for i < m we 
have 

bi = (E) (2) = ap' 

and at i = m 
m - 1  

bm = ($) tz) (2) = gapm-'. (20) 

Introducing these variables into (17) we are left with a 
sum of two finite geometric series which, after some ma- 
nipulation, yield the expression that is the central result 
of this paper: 

1 q (1 - a2pm-1)(1 - p")  
r m = - - ' - '  2f 1 - p (1 - q2a2p2"-2) * (21) 

Equation (21) is the exact relation for the reflection delay 
of a lossless quarter-wave mirror with an arbitrary number 
of sections and material indexes at the mirror band-stop 



518 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 28 NO. 2 ,  FEBRUARY 1992 

center frequency. There are several noteworthy features 
of (21): The mirror reflection delay is expressed in terms 
of the magnitude of the individual interface reflections. 
The value of the delay remains unchanged if q, p ,  and a 
are replaced by l / q ,  l /p,  and l / a .  This means that any 
LHLH layer sequence has a corresponding HLHL se- 
quence for which the delay times are equal. Furthermore, 
the reflection delay from the front and the back of a QWM 
is generally not equal as it depends on the incident and 
exit medium indexes. The functional dependence of (21) 
is illustrated in Fig. 4 for several number of layers and a 
continuous variation of the refractive index nH. The gen- 
eral trend in Fig. 4 is that mirrors with large index differ- 
ences produce short delay times. The small reduction in 
the delay for very small index difference occurs because 
the reflection at the exit medium interface starts dominat- 
ing (the exit medium in Fig. 4 is air). A fact not apparent 
in the figure is that any decrease in the refractive index 
difference for a fixed number of periods will also decrease 
the maximum reflectivity of the mirror. For a large num- 
ber of periods the curves approach that of an infinite 
QWM. The reflection delay of an infinite mirror (unit re- 
flectivity) is the maximum delay a QWM can realize at 
the center frequency and it is obtained by taking the 
m + 03 limit in (21): 

It is worth noting that in most amorphous mirrors (nH - 
nL > 1 )  (22) can be used reliably if the number of periods 
is greater than 3 ,  which can be also seen from Fig. 4 .  A 
special case of interest is the behavior of r, when the in- 
dex difference between all of materials involved is a very 
small nl, nE, nH, nL = n ,  and A n  = nH - nL << n. In 
this case the reflection delay (and the penetration depth) 
can be found by differentiating the phase of the expression 
for the DBR reflectivity obtained by CWT [ 5 ] :  

n tanh ( K Z )  
(23) 

where Z is the thickness of the mirror and K is the coupling 
coefficient. For a square index perturbation K = 2An/Xo,  
where Xo is the design wavelength ( XO = 27rc/w0) [6] .  
Equation (23) can also be obtained from (21) by applying 
the noted assumptions about the values of the refractive 
indices. To this end we let nH = n + A n / 2  and nL 5: n 
- A n / 2 ,  and set qa 5: a 2  = p .  Equation (21) then re- 
duces to 

r = -~ 
C K  

Factor p can be approximated by p"' 5: ( 1  - An/n),, 
whereas the thickness of the mirror is related to m by 1 = 
mh/4n.  We let A n  become very small while keeping ~1 
constant: 

0 . 1  
0 .01  0 .1  1 3 

Fig 4 A family of curves illustrating the functional dependence of nor- 
malized reflection delay f7 on matenal parameters. The values used in this 
plot are n, = 3.2 (InP), nE = 1.0 (air), and nL = 1 45 (Si02), whereas the 
refractive index difference nH - nL was vaned continuously from 0.01 to 
3.0 for illustration. The multiple curves correspond to different number of 
penods: 1, 2, 3, 5 ,  7 ,  10, 15, 25, and infinite 

Using (24) and (25) we easily arrive at (23), which shows 
that in this limit (21) and the results of the CWT agree. 
The importance of (21) ,  then, lies in its application to 
abrupt multilayered structures with large index differ- 
ences such as amorphous dielectric media where the cou- 
pled mode theory cannot be applied. 

B. The Phase Penetration Depth L, 
The reflection delay in a distributed reflector is most 

commonly associated with an apparent depth of penetra- 
tion into the mirror. The interpretation of the delay time 
with distance is potentially misleading since one needs to 
know the velocity of propagation in the medium. Never- 
theless, for the practical use of the penetration depth con- 
cept one never needs the real propagation constant in the 
medium. The penetration depth is parameter used to model 
the distributed (approximate linear phase) reflector with a 
fixed-phase mirror at some distance farther into the orig- 
inal mirror. For simplicity one assumes that the light 
propagates at the same rate in the reclaimed space in the 
mirror as in front of the mirror. Fig. 5 illustrates this 
interpretation: A wave is incident from a medium with 
refractive index n onto a distributed mirror with linear 
phase. Its reflection is delayed by rand  scaled by the value 
of the reflectivity r,. The equivalent model for the dis- 
tributed mirror is realized by extending the incident me- 
dium beyond the reference plane and by placing a fixed- 
phase mirror at depth L,. To the observer placed to the 
left of the reference plane, the mirrors will appear equiv- 
alent if the reflectivity and the phase characteristics of the 
two cases are equal. It is easy to show that this is satisfied 
if 
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r,,, 
mmor with linear phase 

reference plane - 

fixed phase mirror 

Fig. 5. The illustration of the penetration depth concept. A linear phase 
mirror is replaced by a fixed phase mirror displaced by length L, into the 
mirror. The linear term in the phase characteristic is absorbed by the dis- 
tance L,, whereas the eo term assures that the phase of the equivalent and 
the original mirror match at the center frequency. 

where L, is the phase penetration depth. The use of the 
equivalent fixed-phase mirror and the penetration depth 
concept illustrated in Fig. 5 is completely transparent to 
any calculations involving the mirror phase as long as the 
QWM can be assumed to have a uniform amplitude and a 
linear phase in the spectral range of interest. The func- 
tional dependence of L,  on the number of layers is shown 
in Figs. 6 and 7. The strength of individual interface re- 
flections directly influences how fast the delay saturates 
with the number of layers in the mirror. For the case of 
very small material index differences, the phase penetra- 
tion depth becomes, [from (23) and (26)] ,  

(27) 

The mirror reflection delay needs to be considered in 
the determination of Fabry-Perot cavity mode frequen- 
cies. Consider a cavity with a mirror-to-mirror distance 
LFp and two identical quarter-wave mirrors each having a 
reflection delay 7. (The mirror center wavelength is not 
necessarily tuned to the cavity mirror-to-mirror optical 
length.) The longitudinal modes of this structure occur at 
frequencies at which the round trip phase is an integer 
multiple of 2n.  The sum of phase terms in the cavity 
round-trip gives 

(28) 

where & is the propagation constant of the kth mode, and 
wo the QWM center frequency. The term in brackets is 
defined as the effective cavity length: LeR = LFp + 2L,. 
The penetration depth L, is defined by (26) with n being 
the refractive index of the cavity material. Equation (28) 
shows that, in general, the longitudinal mode frequencies 
of a Fabry-Perot cavity with quarter-wave mirrors depend 
on the penetration depth of the mirrors. The only excep- 
tion is the resonant mode of a cavity in which both the 
mirror-to-mirror cavity optical length and the QWM cen- 
ter frequency are tuned to the same frequency. Because 

tanh ( K Z )  
L, = ~ 

2K ’ 

2flk(L~p + 2L,) - h 0 7  = 2Tk 

__ 
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Fig. 6. The comparison between the penetration depths Le, L,, and Ld for 
two practical quarter-wave mirrors: SiN-Si and AIGaAs-GaAs. The pen- 
etration depths are normalized to one quarter-wavelength (QWT) in the 
incident medium. The refractive indexes of the materials are given in pa- 
rentheses. The exit medium is air nE = 1.0, and the incident medium InP 
and GaAs, respectively. 

10 

$ 5- 

0 1  
0 2 4 6 8 10 

number of penods 
~ 

Fig. 7. The comparison between the penetration depths Le, L,, and Ld for 
the same mirrors as in Fig. 6 except that the incident medium is air n, = 
1.0, and the exit medium InP and GaAs, respectively. 

the QWM phase at the center frequency is always zero or 
T, the resonant mode frequency and its wave pattern re- 
main intact when the mirror penetration depth is changed. 
(In (28) L,  is eliminated for f l k  = noo/c . )  All other modes 
in this case shift away or toward the design frequency 
when L, is changed. 

IV. ENERGY PENETRATION DEPTH Le 
In Section I11 the concept of penetration depth was in- 

troduced in connection with a phase conserving model of 
the QWM. Now we introduce the energy penetration 
depth Le, a parameter that relates the total electromagnetic 
energy stored in the QWM to the energy density in front 
of the mirror, thus serving as a parameter in an energy- 
conserving model. 

In Fig. 8 we show the energy density distribution in a 
QWM at the center frequency. The energy distribution 
within each section is represented by a constant value, 
whereas the horizontal axis is the number of quarter- 
wavelengths, which is why all of the mirror sections are 
shown with equal thicknesses. We first introduce the nor- 
malized energy penetration depth A as the ratio of the to- 
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Fig. 8 .  Energy distribution inside a quarter-wave stack at the band-stop 
frequency f. The horizontal axis is normalized to the optical path so that 
all layers have equal width and the energy-per-layer distribution falls 
monotonically. 

tal amount of energy within the mirror W, and the energy 
contained in the quarter-wavelength of space in front of 
the mirror W*. 

WT A = - .  
W* 

The meaning of A is illustrated graphically in Fig. 8: The 
total energy contained in the blocks of monotonically de- 
creasing height is now contained in a uniform distribution 
vanishing abruptly at depth A. The penetration depth is a 
dimensionless parameter that expresses width of this dis- 
tribution in terms of quarter-wave thicknesses. In order to 
determine A we first find the expression for the total en- 
ergy W,. Using the notation from Fig. 8, the Poynting 
vector magnitude in each section Si vector is given by 

where Zo is the characteristic impedance of vacuum, n, the 
refractive index of section i and R, - the power reflectiv- 
ity of the i - 1-section quarter-wave mirror seen from the 
section i. The energy contained in section i is obtained by 
integrating the energy density over one quarter-wave pe- 
riod: 

In a QWM with no loss, the Poynting vector is constant 
throughout the structure Si = S .  This condition gives us 
the means of connection between (30) and (31), yielding 

The total energy in the mirror is now a sum of all Wi. We 
just need to sum (32) for all sections in the mirror. Using 
the tanh substitution, again with (A1 1) and (20), we have 

(33) 
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The penetration depth A is then given by the sum, 
m - 1  

i = O  c (' + bi) 

(34) 

By the introduction of a ,  q ,  andp after some manipulation 
we arrive at 

(35) A = -  q . (1 + a2pm-')(1 - p") 
1 - p (1 + q2aZp2m-2) . 

This expression is exact for an arbitrary QWM at the cen- 
ter frequency. Note the similarity with (21): The differ- 
ence arises from the distributed nature of the quarter-wave 
mirror. We can now define the energy penetration depth 
with the dimensions of distance as 

A0 Le = - A. 
4n 

The general behavior of A as a function of mirror refrac- 
tive indexes is very similar to the one shown forf7 in Fig. 
4. By taking the ratio of (21) and (35) one can see that for 
a finite m, Le is always greater than L,. The two penetra- 
tion depths become practically equal if a2p" << 1 and 
the difference between them decreases with the degree by 
which this condition is met. Physically this means that 
either the number of layers is large, in which case p" -+ 

0, or the last interface in the mirror dominates the overall 
reflectivity: (a << 1). The effect can be seen by compar- 
ing Figs. 6 and 7 where we have shown Le and L, as func- 
tion of the number of periods (2m) for an epitaxial and an 
amorphous mirror sandwiched between a semiconductor 
and air. In Fig. 6 the incident medium is the semiconduc- 
tor, whereas in Fig. 7 it is air. The factor a 2  in Fig. 6 is 
almost five times smaller than in Fig. 7 and therefore the 
two penetration depths in Fig. 6 are almost equal for all 
numbers of periods. In the small-index difference limit 
using the approximations described in (24) and (25) we 
can show that 

tanh (2~1) 
Le = 

2K (37) 

which also shows that L, > L, for short mirrors. The dis- 
crepancy between the two penetration depths (27) and (37) 
is most significant in the limit K L  -+ 0. For small ~1 the 
energy distribution in the mirror is close to uniform and 
therefore Le 4 1. Because the reflection delay is an aver- 
age of reflections from all interfaces, it is natural to expect 
that L, + 1/2 in the K Z  + 0 limit. An example of the use 
the energy penetration depth is the determination of the 
longitudinal confinement factor in a VCSEL. The con- 
finement factor is given by the ratio of electromagnetic 
energy in the active region of length L, and the total en- 
ergy present in the cavity: 
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and therefore the penetration depth to be used when cal- 
culating the cavity mode separation and the longitudinal 
confinement factor is not the same for finite mirrors. 

V. ABSORPTANCE 
VCSEL laser mirrors typically require reflectivity val- 

ues in excess of 98% for efficient operation. Because the 
cavity mirror losses are proportional to In (R) - 1 - R, 
any small variation of R produces large changes in the 
loss [21]. The determination of the peak reflectivity of a 
mirror with no loss is a simple task using the quarter-wave 
transformation equations [6], [20], but the predicted val- 
ues provide an overestimate of the value of the reflectivity 
if loss is present in the mirror. The reasons for the reduc- 
tion of the peak reflectivity arises from the scattering at 
rough interfaces between the sections or most commonly 
from the absorption in the dielectric materials that consti- 
tute the mirror. Given that the extinction coefficients are 
known for all mirror materials, the exact value of the re- 
flectivity can be obtained using the transmission matrix 
approach [8], [9]. There are, however, approximate 
expressions that are valid in the case of small loss and 
very long mirrors [13]. Our objective is to derive an an- 
alytic expression for the absorptance of the QWM with 
weak absorption loss as a function of mirror optical pa- 
rameters and the number of layers and relate this to the 
concept of energy penetration depth and the maximum 
mirror reflectivity. The derived expressions will also take 
into account that the absorption loss in the two materials 
may in general be different. 

Consider a QWM with no absorption: Power conser- 
vation requires that the sum of the power reflectivity and 
transmission coefficients equal unity, namely Ro + To = 
1 .  If there is power dissipation present in the mirror, then 
both the reflectivity and the transmission will be reduced. 
The power balance is now given by R + T + A = 1 ,  
where R and Tare the reflectivities of the mirror with loss, 
and A is the absorptance [ 131 : 

pdiss 

Pinc 
A = - .  (39) 

Here Pdiss and Pinc are the power dissipated and power 
incident on the reflector. For small loss we assume that 
the reflectivity and the transmission can be approximated 
by 

R Ro(1 - A)  T z To(1 - A ) .  (40) 

These relations satisfy the power balance condition R + 
T + A = 1, and because it has been shown [18] that (R 
- Ro)/Ro and (T  - To)/To are of the same order, they 
represent a reasonable first-order approximation for the 
reduced reflectivity value. For high-reflectivity mirrors the 
error in estimating R by the use of (40) reduces, as R >> 
T. We now proceed to determine the absorptance of a 
QWM. Under steady-state conditions the power dissi- 
pated in the mirror can be deduced from the energy dis- 

tribution in the mirror and the loss rate: 

WT = w(x)  d*- (42) 

where the integrals are to be taken over the entire length 
of the mirror. Here a(x )  and n(x) are the position-depen- 
dent power loss coefficient (1 /length) and the refractive 
index within the mirror. The energy density per unit length 
is denoted by w (x) and the total energy present in the mir- 
ror by W,. The QWM structure is periodic with two dif- 
ferent materials of equal optical thickness, therefore a(x )  
and n(x) are uniform within each section. Equations (41) 
and (42) can then be written as 

where W, and WH are the amounts of energy present in 
the two materials. The material extinction coefficients are 
denoted by k, and kH. (The extinction coefficients are re- 
lated to the absorption coefficients via CY = 4aklX). If the 
extinction coefficients are linear and sufficiently small so 
that the energy distribution may be assumed unperturbed 
by the presence of loss, we can estimate the dissipated 
power by using the unperturbed field distributions in (41) 
and (43). The problem them amounts to finding the ener- 
gies W, and WH as functions of the incident power P,,, 
and the physical parameters of the QWM. In Section IV 
we have already determined by relationship between the 
total energy WT and the energy in the quarter-wavelength 
in the front of the mirror W*. The next step is relating W* 
to the incident power P,,,. The energy stored in one 
quarter-wavelength of incident medium in front of the 
mirror can be found from (32) by setting i = m + 1 .  

S 1 + R o  w * = - . -  
4f 1 -Ro  (44) 

where Ro = R, is the reflectivity of the complete QWM: 

(45) 

The Poynting vector can be related to the incident power 
via 

S = Pi,,(l - Ro) (46) 
and finally, using (39) and (43), we arrive at 

The evaluation of W, and WH in terms of W* can, in prin- 
ciple, be done by separating the odd and the even terms 
in the summation (34), taking care that the final expres- 
sions will differ depending on the parity of m. There is, 
however, a simpler way to obtain the fractions of power 
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in materials H and L by using the expression for normal- 
ized penetration depth A. Consider (32) for energy stored 
in section i and the expressions for the peak reflectivity 
of a QWM (A8) and (A9). Suppose that one of the re- 
fractive indexes, for example nL, changed sign to -nL. 
Under this transformation ri remains unchanged if n, - 
= nH, but ri -+ 1 /ri if ni - = -nL. This alteration then 
changes the sign of the quantity Wi in (32) only for layers 
for which ni - = -nL. Consequently, we can determine 
the difference between the total energy present in mate- 
rials H and L by replacing nL by -nL in (35). Using this 
simple trick, both W, and W, can be found by the appli- 
cation of (35) with different signs in front of for nL and 
nH. For this purpose let us indicate the explicit depen- 
dence of A on the material refractive indexes nL and nH 
by writing A = Am(nH, nL). The W, and WH are then given 
by 

WL = ; [Am(nL,  nH> + ~ m ( n L 7  - ~ H > I  W* 

WH = i [ A m ( n L ,  12,) + A m ( - n L ,  ~H)I  w*. 
(48) 

(49) 

The functional dependence of WL/ W ,  and W,/ W ,  is il- 
lustrated in Fig. 9. As expected, the top layer material 
always contains more energy than the bottom, hence fab- 
ricating mirrors in such a way that the top layer is the one 
with lower absorption will produce higher reflectivity. 
Recognizing that Am@,, -nL) = -Am(-+,, nL), we fi- 
nally have the expression for absorptance: 

The first term in (50) is the contribution from the average 
loss in the mirror, whereas the second represents the cor- 
rection for the difference in the loss rates between the two 
types of layers. In the limit of small loss (ni >> k,)  this 
expression gives the correct value of the QWM absorp- 
tance for any combination of refractive indexes and num- 
ber layers. It is instructive to investigate the behavior of 
(50) for very long mirrors, i.e., m + 03. The penetration 
depth saturates at A = q / ( l  - p ) ,  but to obtain the ab- 
sorptance we need to note the orientation of the quarter- 
wave sequence. For the case when the first layer in the 
mirror is of material H the absorptance becomes 

Similarly, for an infinite mirror with material L as the first 
layer we obtain 

These two expressions are known approximate relations 
for the absorptance of the quarter-wave stack in the .res- 
ence of small loss given in [ 131 , [ 181, [ 191. Equation (50) 
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Fig 9 Calculated distnbution of total energy in the mirror between the 
two mirror matenals The top matenal always contains more energy The 
structure is identical to the one used in Fig 1. 

is a general result applicable to quarter-wave mirrors of 
any number of layers (odd or even) and optical parameters 
of both the mirror materials and the surrounding media. 
The absorptance of a quarter-wave stack with weak ab- 
sorption was also estimated by D. J. Hemingway and 
Lissberger [19] using a different method. Their approach 
yielded two absorptance expressions that differed depend- 
ing on whether the total number of layers is odd or even 
and assumed that the incident and the exit medium refrac- 
tive indexes equal to one of the mirror material indexes. 
Both of the absorptance expressions given in [19] can be 
obtained from (50) by evaluating A, for a particular parity 
of m. Using the approximation (40), (50) can be used to 
find the reduction in QWM peak reflectivity due to the 
presence of weak absorptance. Fig. 10 shows the calcu- 
lated peak reflectivity for the quarter-wave mirror struc- 
ture shown in the inset of Fig. 4 with and without absorp- 
tion loss in the silicon layers. The reflectivity calculation 
has been done exactly using transmission matrix approach 
[9] and using the approximate expression for reflectivity 
(40) with the absorptance given by (50). For the case 
shown there was practically no difference between the two 
methods of calculation, in spite of the relatively high ex- 
tinction coefficient used for amorphous silicon (kH = 0.01 
@ 1.3 pm). At this point one may wish to interpret the 
absorptance as a product of the an average material ab- 
sorption coefficient (independent of the number of layers) 
and a penetration depth. However, it is not possible to 
realize this kind of a separation unless the second term in 
(50) is neglected. In that case the absorptance can be writ- 
ten as 

A 2 z d  (53) 

where 

(54) 
- nLaH + nH% 
C Y =  

nL + *H 

and Ld is the loss (dissipative) penetration depth given by 

(1 + u 2 p m - l ) ( 1  - p") 
(1 + qupm-1)2 L d =  - -. . (55) (2) 1 : p  

Note the difference between the denominators of Ld and 
Le. It arises from the presence of the (1 + Ro) term in 
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R 

mirror with absorption 

n 2 J 6 x 10 

Number of periods 

Fig. 10. The comparison between the peak reflectivities of Si,N,-Si mir- 
rors both with no loss present in silicon and with absorptive silicon using 
(50). The refractive indexes used were nL = 2.0 (Si,N,) and nH = 3.5 - 
iO.O1 (Si, Xo = 1.3 pm). 

(50). Figs. 6 and 7 compare the loss penetration depth Ld 
to L, and L, for two practical mirrors, and as expected 
from expressions (35) and (55) Le > Ld always. For mir- 
rors with a small index difference we can solve for Ld both 
using CWT and from (55) by introducing approximations 
(24) and (25): 

tanh (KL) 
Ld ____ 

2K ' 

Equation (56) is identical to (27) and therefore for mirrors 
with small index differences (practical epitaxial mirrors) 
one can use either L, or Ld when calculating the absorp- 
tance. An example of the use of our absorptance deriva- 
tions is the accounting for mirror loss in the laser thresh- 
old gain determination. Consider a Fabry-Perot cavity 
with a mirror to mirror cavity length LFp and two identical 
mirrors with peak power reflectivity of R .  The active re- 
gion and the cladding thickness are La and L,, respec- 
tively, and the lateral confinement factor is I?. The thresh- 
old gain is then given by 

rg,,,L, = I?a,L, + lh ,L,  - In (Rd) - In (R) (57) 

where a,, ac, -In (Rd), and -In (R)  are the losses in the 
active and the cladding regions, the diffraction losses, and 
the mirror losses. Reflectivity R in this expression in- 
cludes the mirror loss and therefore there is no need for 
introducing a penentration depth. In practice, the reduc- 
tion of reflectivity due to the presence of loss is very small 
and the logarithm can be expanded in order to separate 
the interference and the dissipative part of the -In (R) 
term. Using (40) we have 

-In (R)  = -In (R,) + 2ELd (58) 
where Ro is the reflectivity of the laser mirror is lossless. 
Introducing (58) back to (57) we obtain the threshold gain 
expression most commonly used for epitaxial mirrors. 

VI. CONCLUSION 
In this paper we have discussed the significance of the 

quarter-wave mirror penetration depth, as a parameter 
both in a phase and an energy conserving model of the 
quarter-wave mirror. The rejection delay is the origin of 

the phase penetration depth L, and it plays a role in the 
determination of the cavity mode position and separation, 
whereas energy penetration depth Le is used to evaluate 
the longitudinal confinement factor in a vertical cavity 
surface-emitting laser structure. In our study we concen- 
trated only on the mirror properties at and in the imme- 
diate neighborhood of the Bragg frequency. For this con- 
dition we have derived exact analytic expressions for both 
Le and L, valid for arbitrary index differences and number 
of layers, which makes our expressions applicable to both 
epitaxial and amorphous quarter-wave mirrors. We fur- 
thermore show that the difference between Le and L,  re- 
duces with the number of sections in the mirror and the 
strength of the reflection at the last mirror interface. In 
the limit of an infinitely long mirror Le and L, become 
equal. The derived expressions agree with the predictions 
of the CWT in the limit of small refractive index differ- 
ences. We have also used the energy penetration concept 
to derive a first-order approximation for the absorptance 
of a quarter-wave stack in the limit of small loss and re- 
lated the concepts to the threshold gain calculation for a 
VCSEL. The loss penetration depth Ld was introduced as 
parameter that approximately accounts for the effect of 
small absorption loss in the mirror on the value of the 
peak reflectivity. 

APPENDIX 
The tanh substitution provides a simple way to deter- 

mine the reflectivity of combinations of quarter-wave and 
half-wave multilayer structures at the resonant frequency. 
We illustrate here the use of the substitution applied to 
the quarter-wave mirror case. For more general applica- 
tions the reader is referred to [20] where the tanh substi- 
tution has been discussed in detail. 

We start from the same consideration as in ( 5 ) ,  except 
that for the peak reflectivity calculation we do not have to 
use complex reflectivities. Consider the reflection of a 
single quarter-wave layer structure. Equation ( 5 )  then 
reads 

Using the substitution 

si = Itanh-' ( p i ) (  (A2)  
and the hyperbolic tangent addition formula (AlO), we 
arrive at 

Irl( = tanh (sl + so). 643) 
The relation for the peak reflectivity of the entire stack 
can be derived by repeated application of ( A l ) ,  (A3) ,  and 
(A3): 

Ir,l = tanh (s2 + s1 + so) (A4) 
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where the summation goes over all interfaces in the struc- Bragg reflector,” IEEEJ. Quantum Electron., vol. QE-19, pp. 1042- 
1051, 1983. 

ture: for layers there are + interfaces. Each inter- [6] H. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs, 
face is characterized bv a factor s;, which can be ex- NJ: Prentice-Hall. 1984. 
pressed in terms of material indexes at the interfaces: 
Using (A2), we can write 

and find that si is given by, 

1 
’ 2  
s. = - - In  (%) 

The reflectivity of the entire structure is then given by 

1 - b, r, = ~ 

1 + b, 

with b, being the product of the refractive indexes (nL /nH)  
for all interfaces in the stack: 

m , \  

(Note that 0 < b, < 1.) Using identity (A12) it is easy 
to show that (14) reduces to (15): 

A.  Hyperbolic Function Identities Used in the 
Derivations 

(A 10) 
tanh (a)  + tanh (b) 

1 + tanh (a)  tanh (b) 

1 + t a d  (U) 

1 - tanh2 (a) 

2 tanh (a) 
I - tanh2 (a)‘ 

tanh (a + b) = 

cosh (2a) = 

sinh (2a) = 
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