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2 FGUP “VNIIFTRI”, Mendeleevo 141570, Moscow Region,Russia 
3 National Research Nuclear University “MEPhI”, Moscow 115409, Russia 
 
E-mail:  ovd@phys.vsu.ru 

Abstract. Multipole, nonlinear and anharmonic effects on the optical-lattice-based clocks of 
Mg atoms are evaluated theoretically. Dipole polarizabilities, hyperpolarizabilities and 
multipolar polarizabilities for Mg atoms are calculated in the single-electron approximation 
with the use of analytical presentations for the wave and Green’s functions in the modified 
model-potential approach. For comparison, the data are also given for atoms of the group IIb 
elements (Zn, Cd, Hg).  

1.  Introduction 
The recent progress in detecting experimentally the 3P0 – 1S0 clock transition in neutral Mg atoms and 
determination of corresponding magic wavelength (MWL) mag   468.46 nm [1] paves the way to the 
development of a new time-frequency standard of Mg atoms in an optical lattice. To ensure the Mg 
clock fractional uncertainties below 10-17, the role of nonlinear and non-dipole effects of interaction 
between trapped atoms and the magic-frequency lattice should be evaluated. 

In this paper, we present theoretical considerations of the most appropriate operational conditions 
based on results of numerical calculations of electromagnetic susceptibilities of Mg atoms in their 
clock states. The single-electron Fues’ model-potential (FMP) approach was used with modifications 
introduced for the most efficient account of contributions from the valence electrons of the 3s2 shell 
and from their interaction with the inner-electron shells [2, 3]. The modifications of the FMP 
parameters were performed, taking into account the contribution of the 3s electron to the polarizability 
of the upper clock state 3s3p(3P0). The modified approach improved significantly the agreement of the 
calculated MWL (471.6 nm) with the above-cited result of experimental measurements.  

Together with electric-dipole (E1) frequency-dependent polarizabilities 1
( ) ( )E

e g   of the excited (e) 

and ground (g) clock states the magnetic dipole 1
( ) ( )M

e g   and electric quadrupole 2
( ) ( )E

e g   
polarizabilities (M1 and E2) provide their specific contributions to the dynamic Stark shift. The E2-
M1 contributions to the linear in the laser intensity I  Stark shifts of the clock energy levels are added 
to the E1 shift in a traveling wave and subtracted in a standing wave, due to the on-phase and a 
quarter-period off-phase temporal and spatial distributions of corresponding interactions [4, 5].  

The shift of the clock frequency in a traveling wave is determined by the difference of 
polarizabilities ( ) ( ) ( )e g          : 
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( ) ( , )
4 16clock
I I

          , (1) 

where 1
( ) ( ) ( )( ) ( ) ( )E qm

e g e g e g        , and 2 1
( ) ( ) ( )( ) ( ) ( )qm E M

e g e g e g        is the sum of the E2-M1 
polarizabilities, which in the far-off-resonance regions of frequencies is usually 6 to 7 orders smaller 
than the dipole polarizability 1

( ) ( )E
e g  . The quadratic in I  shift, determined by the difference of the 

clock-state hyperpolarizabilities ( , ) ( , ) ( , )e g           , is also taken into account in (1). 
The second argument   indicates the dependence of hyperpolarizabilities on the circular polarization 
degree   [6], which for the clock states may be written as  

 2
( ) ( ) ( ) ( )( , ) ( ) ( ) ( )l c l

e g e g e g e g              , (2) 
where two independent components of the hyperpolarizability tensor determine the quadratic shift of 
excited (ground-state) energy level in the field of linearly polarized ( ( ) ( )l

e g  ) and circularly 

polarized ( ( ) ( )c
e g  ) laser radiation. 

The clock-frequency shift in a field of a lattice standing wave has quite different dependence on the 
lattice-laser intensity. In particular, this dependence includes in addition to linear and quadratic in I  
terms, those proportional to I  and to 3/ 2I , which are related with the vibrational motion of an atom 
trapped in the lattice-induced dynamic Stark-effect energy well. Corresponding equations and their 
backgrounds are described in section 2 of this paper. In section 3 the numerical data of calculations on 
the basis of the model-potential approach in the single-electron approximation are presented for 
magnesium atoms in comparison with earlier calculated data [3] for some other atoms of the group II 
elements. 

Atomic units 1e m    are used throughout the paper, unless otherwise stated explicitly. The 
speed of light in atomic units 137.036c   coincides numerically with the inverse fine-structure 
constant 1/137.036  . 

2.  Shifts of clock levels in the field of a lattice wave 
The Stark effect on atomic energy levels enables trapping neutral atoms in the minima of thus created 
potential-energy wells in a lattice standing wave. But the Stark energies of the ground and excited 
clock states cause the clock-frequency shift which should be taken into account in evaluating the 
clock-frequency uncertainties. 

The Stark energies are determined by the interaction of a trapped atom with a lattice wave of an 
electric-field  

 0( , ) 2 cos( ) cos( ),X t kX tE E  (3) 
and a magnetic field (a quarter-period off-phase, both in space and time) 

  0( , ) 2 sin( )sin( )xX t kX t B e E , (4) 
oscillating in time with frequency   and in space along the incident laser beam of intensity 

2
0 / 8I cE   and the wave vector , /xk k c k e ; X  is a displacement of an atom from the lattice 

standing-wave antinode in the lattice-laser-beam direction determined by the unit vector xe . The 

operator of atom-lattice interaction may be presented as  ˆ ˆ( , ) Re ( ) exp( )V X t V X i t  , where the 

spatial factor determines an X-distribution of electric dipole 1 0
ˆ ( )EV  r E , electric quadrupole 

  2
2 0 2

ˆ ( , ) / 6EV r c     2E n C  and  magnetic dipole  1 0
ˆˆ ˆ[ ] ( ) / 2MV c   n E J S  

operators [3, 7] 
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 1 2 1
ˆ ˆ ˆ ˆ( ) cos( ) ( )sin( )E E MV X V kX V V kX   . (5) 

Note, that the operators are written with account of doubling the amplitude of an incident laser wave 
0E  in the amplitudes (3) and (4) of a standing wave. 

With account of the second- and fourth-order in ˆ( )V X  terms of perturbation theory, linear and 
quadratic in the lattice-laser intensity I  correspondingly, the interactions (5) produce lattice potential 
wells for an atom in its ground (g) or excited (e) state, which may be presented, as follows [8]  

 2 4
( ) ( ) ( )( ; , , ) ( , , ) ( , , ) ( , , )latt harm anh

g e g e g eU X I D I U I X U I X            (6) 
The separation of neighbour wells equals half wavelength   of the lattice wave. To exclude tunneling 
atoms between potential wells, its location near the well bottom (at the equilibrium position 0X  ) 
should hold the inequality / 4X  , where / 4  is the distance between the top and bottom of the 
well. At this condition the ratio between absolute values of consecutive terms in the right-hand side of 
equation (6) is significantly smaller than the unit. Therefore, the motion of a trapped atom is described 
by the wavefunctions of an anharmonic oscillator. The depth of the potential well (6) 

 1 2
( ) ( ) ( )( , , ) ( ) ( , )E

g e g e g eD I I I        , (7) 

is determined by the lattice-frequency-dependent electric dipole polarizability 1
( ) ( )E

g e   and 

hyperpolarizability ( ) ( , )g e    of the ground (excited) state. At an operational intensity the quadratic 
term in the right-hand side of equation (7) is at least 6 orders of magnitude smaller than the linear one. 
The coefficient of the harmonic term, determining the frequency of vibrations ( ) ( , , )e g I    in a 

lattice trap, depends on a combined E1-E2-M1 polarizability 1
( ) ( ) ( )( ) ( ) ( )dqm E qm

e g e g e g        and on 
the hyperpolarizability, as follows 

 
2

( ) 2 2
( ) ( ) ( )

( , , )
( , , ) ( ) 2 ( , )

2
g eharm dqm

g e g e g e

I
U I I I k

 
      


    


. (8) 

From this equation the eigenfrequency of the atomic vibrations inside the potential well (6) may be 
presented as 

 2
( ) ( ) ( ) ( )( , , ) 2 ( , , ) ( ) ( , )rec qm

g e g e g e g eI D I I I              , (9) 

where 2 2 2/(2 ) /(2 )rec k c     is the recoil energy of a lattice photon, 1823�   is the 
mass of atom in the atomic (electron mass) units,   is the mass of atom in the atomic mass units  
(1/12 of the carbon atom 12C6 mass), presented for each atom in periodic tables. It becomes evident, 
that together with linear and quadratic in intensity terms, the dependence of the energy-level shifts in 
the field of the lattice wave includes also the terms of half-integer powers of I .  

The coefficient of the anharmonic term is 

 
2 24

( )2 4 2
( ) ( ) ( ) ( )

( , , )
( , , ) ( ) 5 ( , ) ( , )

3 6
g eanh dqm

g e g e g e g e

k IkU I I I k I
 

         


     


. (10) 

Thus, the atom trapped in the potential energy well (6) effectuates vibrations in a bound state of an 
oscillator quantum number n and of the vibration energy 

 2
( ) ( ) ( ) ( )

1 1( , , , ) ( , , ) ( , , ) ( , , )
2 2

vib anh
g e g e g e g eI n D I I n I n n                  

   
E -E , (11) 

added to the energy of atom in its ground (excited) state. Here the anharmonic constant is determined 
by the recoil energy, and the fraction of hyperpolarizability over the E1-E2-M1 polarizability 

( ) ( )dqm
e g  , as follows  
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 ( )
( )

( )

3 ( , )
( , , ) 1

2 ( )

rec
g eanh

g e dqm
g e

I
I

  
 

 

 
  

  
E


.  (12) 

Therefore, the hyperpolarizability contributes, via the anharmonic effect, to the linear in I term of the 
vibration energy (11), which is however essentially smaller than the linear term of the depth (7), since 
the fraction in the brackets at the operational intensity is on the order of 10-7-10-6. 

3.  Lattice-induced clock-frequency shift 
Thus, the shift of the clock-transition frequency in a lattice-trapped atom is determined by the 
difference of vibration energies (11) of atom in clock states: 

 
2

( , , , ) ( , , , ) ( , , , )

1 1( , , ) ( , , ) ( , , ) ,
2 2

latt vib vib
cl e g

anh

I n I n I n

D I I n I n n

      

     

  

             
   

E E

E
 (13) 

where the oscillation quantum number n is one and the same for the excited and ground-state atom, 
independent of transition between its clock states (the Lamb-Dicke regime). Therefore the dependence 
of the clock-frequency shift for an atom in the field of the lattice standing wave differs significantly 
from that of the traveling wave (1) and may be presented, as follows: 

 1/2 3/2 2
1 21/2 3/2( , , , ) ( , ) ( , , ) ( , , ) ( , )latt

cl n I n n nc I c I c I c I              . (14) 

The half-integer powers of the laser intensity I  appear in the right-hand side of this equation from the 
eigenfrequency (9) of atomic oscillations in lattice traps. The basic contributions to this shift comes 
from the difference of electric-dipole polarizabilities 1 1 1( ) ( ) ( )E E E

e g        , which should 

vanish at the “magic” frequency m , determined as the root of equation 1 1( ) ( ) 0E E
e m g m     . 

Equalization of the E1 polarizabilities means the equivalence of only the linear terms of the depths (7) 
of the Stark-effect energy wells. However, an inevitable in practice uncertainty of the magic frequency 

m  may introduce corresponding uncertainties into the differences of electric dipole polarizabilities, 
transferred into the differences D  and  . The latter appear in the coefficients 

1
1/ 2 1/ 2( ) ( , )E

mc n c n   and 1
1 1( , ) ( , , )E

mc n c n    of the square-root and linear in I   terms of the 
resolution (14) taken at the magic frequency m . The multipole (E2-M1) effects, transferred into the 
difference e g    , appear only in the square-root term of (14), whereas effects of the 

hyperpolarizability appear in all three terms D ,   and anhE  of equation (13) and finally 
contribute to the values of all the rest coefficients  1( , ) ( , , ) ( 1,  3 / 2,  2)E

j j mc n c n j    . So, the 
coefficients in the right-hand side of (14) may be presented in terms of the magic frequency shift 

m , the differences of multipole polarizabilities ( ) ( )qm qm qm
m e m g m        and the differences 

of hyperpolarizabilities ( ) ( , ) ( , )m e m g m          , as follows: 

 

1
1 1

1 / 2 1

1
1 21

1 1

1 11
3 / 2 21

1( ) ,
2

3 1( , ) ( ) ,       
2 2

1( , ) 2 ( ) , ( ) ( ).
2

E rec
E qmm E

m m E
m

E rec
E m E

m mE
m

rec
E EE

m mE
m

c n n

c n n n

c n n c


 

 


   

 

     


            
           

      
 







 (15) 
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The values of all frequency-dependent quantities here are taken at the magic frequency of equal E1 
polarizabilities (denoted by indexes “m” and “E1”).  

As is seen from equations (14) and (15), the possibility appears to introduce an “operational magic” 
frequency [7], which could minimize the lattice-induced clock-frequency shifts (13) within the 
operational distribution of the laser intensity over the lattice sites occupied by trapped atoms. To this 
end, the magic frequency shift m  should be controllable value, together with the circular 

polarization degree   and the intensity of the lattice laser I . In this case, the contribution of qm
m  to 

the coefficient 1
1/ 2 ( )Ec n  and the hyperpolarizability contribution to 1

1 ( , )Ec n   may be compensated by 
the E1-polarizability derivative term. Evidently, for the most efficient compensation, the atoms should 
be cooled down to the lowest possible oscillator quantum number 0n  . In addition, the polarization 
dependence of the hyperpolarizability (2) may be used. In the case of opposite signs of the 
components l

m  and c
m  the hyperpolarizability-dependent terms may be removed at the “magic 

ellipticity” [6] of the lattice wave 1/ 1 /c l
m m m      , for which the hyperpolarizability will 

vanish ( ) 0m m   . As is seen from equations (15), the coefficients 1
3/ 2 ( , )E

mc n   and 1
2 ( )E

mc   also 
vanish at the magic ellipticity.  

For evaluation of the shift (13), the values of the frequency-dependent E1,E2-M1 polarizabilities 
and hyperpolarizabilities at the magic frequency should be known. We have used the Fues’ model 
potential method for describing wavefunctions in the single-electron approximation. The details of 
calculations in the FMP approach and numerical data for susceptibilities of Ca, Sr, Yb, Zn, Cd and Hg 
atoms were presented in [3]. In this paper we report the results of calculations of the data for 
susceptibilities of Mg atoms. First of all, the frequency-dependent polarizabilities of the clock states 
were calculated in the region of the magic wavelength. The results are presented on figure 1 for the 
wavelength dependence of excited- (full curve) and ground-state (dashed curve) polarizabilities. The 
position of the curves intersection at 471.6 nm differs from the result of experimental measurements of 
the magic wavelength [1] by less than 1%., thus confirming satisfactory precision of calculations in 
the FMP approach. 

 
Figure 1. Numerical data of the FMP calculations for the wavelength 
dependence of dynamic polarizabilities of excited (bold curve) and ground-state 
(dashed) Mg atom. Intersection of the curves determines the magic wavelength 
at 471m   nm, close to the result of high-precision experimental 

measurement exp 468.46m   nm [1]. 
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The magic frequency / 2 / 639.95 THzm mc     locates in the violet region of the light 
spectrum, rather close to the clock frequency (see table 1). The energy of two photons 2 m  exceeds 
the ionization potential of Mg atom. Therefore the hyperpolarizability is a complex value with the 
imaginary part determining the two-photon ionization rate, similar to the case of the group IIb atoms 
[3] and to the case of the blue-detuned magic wavelength of Sr atoms [9]. In table 1, the numerical 
data for the magic wavelength, dynamic polarizabilities and hyperpolarizabilities at the magic 
frequencies, the recoil energies and the blackbody radiation-induced clock-frequency shifts are 
presented for Mg atoms together with corresponding data for the group IIb atoms. The real parts of the 
hyperpolarizability components l

m  and c
m  of Zn, Cd and Hg atoms have opposite signs, 

providing the existence of the magic circular polarization degree m  for which  Re ( ) 0m m   .  
As is seen from equations (14)-(15), there are four basic parameters which determine the lattice-

induced shift of the clock frequency: (i) the laser intensity I , which should ensure the trapping 
condition 100 recD   ,  (ii) the vibration quantum number n, which should be reduced to its minimal 
value 0n   by means of the side-band cooling, (iii) the degree of circular polarization  , which can 
eliminate or reduce to minimum the hyperpolarizability effects, (iv) the magic frequency shift m , 

which may reduce to minimal values the coefficients 1
1/ 2 ( )Ec n  of the square-root and 1

1 ( , )Ec n   of 

linear in I  terms. The data of table 1 allows to determine the most suitable values of   and m  to 
ensure the best trapping conditions simultaneously with the lowest lattice-induced clock-frequency 
uncertainties, on the other hand. In figure 2 the corresponding numerical data for the shifts (14) are 
presented for Mg (a) and Hg (b) atoms in the regions of intensities, sufficient to ensure trapping 
conditions.  

 

      
a     b 

Figure 2. Laser-intensity dependence of the lattice-induced clock-frequency shifts in the region of the 
most suitable intensities and polarizations (linear for Mg and magic circular polarization degree 

0.86m    for Hg): (a) in Mg atoms at the magic frequency shifts m = −74.9 MHz (curve 1), 
−75.0 MHz (curve 2) and −75.1 MHz (curve 3); (b) in Hg atoms at m = −2.0 MHz (lower solid 
curve), −2.01 MHz (medium dotted) and  −2.02 MHz (upper dash-dotted curve).   
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Table 1. Characteristics of atoms in optical lattices of magic wavelengths. Bold-faced are 
experimentally determined data on the magic wavelengths for Mg [1] and Hg [10]. The data for the 
MWL of Zn and Cd are evaluated theoretically. The coefficient 0

BBR  of the blackbody radiation-

induced clock-frequency shift dependence BBR BBR 4
0( ) ( /300)  cl T T    on the temperature T  of 

environment is given in the last line of the table. 

Atom Mg Zn Cd Hg 

      
          (nm) 

           
468.46 406.5 414.4 362.57 

  655 969 903 1129 

  
17.5 8.11 9.76 5.70 

  
5.48 15.3 5.86 8.25 

  

111+5.88i – 4.3+1.64i – 5.47+2.02i – 2.67+0.82i 

  

1735+ 8.69i 42.6+2.45i 19.5+3.01i 0.94+1.21i 

  

51.5 24.1 19.9 13.1 

  

0.420 0.187 0.200 0.134 

  
37.9 17.9 10.14 7.57 

  
– 0.424 – 0.23 – 0.22 – 0.188 

Comparison between the lattice-wave induced shifts presented in figure 2 for Mg (plot a) and Hg 
(plot b) demonstrates significant advantage of the heavy atom: despite smaller magic frequency 
( / 2 640 THzMg

m    against / 2 827 THzHg
m   ) the recoil energy for Mg exceeds almost 5 

times that for Hg atoms, therefore the trapping laser intensity  required for Mg is almost twice that for 
Hg, the latter should locate in the region of intensities near 90 kW/cm2. The uncertainty of the lattice-
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induced shift due to the uncertainty of the intensity distribution over occupied by Mg atoms lattice 
sites between 140 and 160 kW/cm2 achieves 10 mHz (between latt

cl =2157 and 2167 mHz) at the 
magic frequency shift m = −75 MHz (see figure 2a). For Hg atoms this kind of uncertainty does not 

exceed 0.5 mHz (around latt
cl = −22 mHz) for the intensities between 60 and 110 kW/cm2 of the 

lattice wave of the magic circular polarization at the magic frequency shift m = −2.01 MHz (see 

figure 2b). To reduce the latt
cl  uncertainty to the level of 0.5 mHz, the fractional uncertainty of the 

operational intensity distribution over lattice sites, occupied by Mg atoms, should not exceed 2% 
around 152I   kW/cm2. 
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