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I. INTRODUCTION

Methods for storage and trapping of charged and neu-
tral particles have very often served as the experimental
key to great scientific advances, covering physics in the
vast energy range from elementary particles to ultracold
atomic quantum matter. The ultralow-energy region be-
came experimentally accessible as a result of the dramatic
developments in the field of laser cooling and trapping,
which have taken place over the last two decades (Sten-
holm, 1986; Minogin and Letokhov, 1988; Arimondo et
al., 1992; Metcalf and van der Straten, 1994; Chu, 1998;
Cohen-Tannoudji, 1998; Phillips, 1998).

For charged particles, the strong Coulomb interaction
can be used for trapping in electric or electromagnetic
fields (Bergström et al., 1995; Ghosh, 1995). At the very
low temperatures reached by laser cooling, single ions
show a variety of interesting quantum effects (Wineland
et al., 1995), and ensembles form a crystalline ordered
state (Walther, 1993). Laser cooling in ion traps has
opened up completely new possibilities for ultrahigh pre-
cision spectroscopy and related fundamental applications
(Thompson, 1993). It is a very important feature of ion
traps that the confining mechanism does not rely on the
internal structure of the ion, which is therefore accessible
for all kinds of experiments.

For neutral atoms, it has become experimental rou-
tine to produce ensembles in the mikrokelvin region, and
many experiments are being performed with such laser-
cooled ultracold gases. It is thus possible to trap the
atoms by much weaker mechanisms as compared to the
Coulomb interaction. Traps for neutral atoms can be
realized on the basis of three different interactions, each
class having specific properties and offering particular ad-
vantages:

• Radiation-pressure traps operating with near-
resonant light (Pritchard et al., 1986; Raab et al.,
1987) have a typical depth of a few Kelvin, and be-
cause of very strong dissipation they allow to cap-
ture and accumulate atoms even from a thermal
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gas. In these traps, the atomic ensemble can be
cooled down to temperatures in the range of a few
10µK. The trap performance, however, is limited in
several ways by the strong optical excitation: The
attainable temperature is limited by the photon re-
coil, the achievable density is limited by radiation
trapping and light-assisted inelastic collisions, and
the internal dynamics is strongly perturbed by res-
onant processes on a time scale in the order of a
microsecond.

• Magnetic traps (Migdall et al., 1986; Bergeman et
al., 1987) are based on the state-dependent force
on the magnetic dipole moment in an inhomoge-
neous field. They represent ideal conservative traps
with typical depths in the order of 100mK, and are
excellent tools for evaporative cooling and Bose-
Einstein condensation. For further applications,
a fundamental restriction is imposed by the fact
that the trapping mechanism relies on the internal
atomic state. This means that experiments con-
cerning the internal dynamics are limited to a few
special cases. Furthermore, possible trapping ge-
ometries are restricted by the necessity to use ar-
rangements of coils or permanent magnets.

• Optical dipole traps rely on the electric dipole in-
teraction with far-detuned light, which is much
weaker than all mechanisms discussed above. Typ-
ical trap depths are in the range below one mil-
likelvin. The optical excitation can be kept ex-
tremely low, so that such a trap is not limited by
the light-induced mechanisms present in radiation-
pressure traps. Under appropriate conditions, the
trapping mechanism is independent of the partic-
ular sub-level of the electronic ground state. The
internal ground-state dynamics can thus be fully
exploited for experiments, which is possible on a
time scale of many seconds. Moreover, a great vari-
ety of different trapping geometries can be realized
as, e.g., highly anisotropic or multi-well potentials.

The subject of this review are atom traps of the last
described class along with their unique features as storage
devices at ultralow energies.

Historically, the optical dipole force, acting as confin-
ing mechanism in a dipole trap, was first considered by
Askar’yan (1962) in connection with plasmas as well as
neutral atoms. The possibility of trapping atoms with
this force was considered by Letokhov (1968) who sug-
gested that atoms might be one-dimensionally confined
at the nodes or antinodes of a standing wave tuned far
below or above the atomic transition frequency. Ashkin
(1970) demonstrated the trapping of micron-sized parti-
cles in laser light based on the combined action of ra-
diation pressure and the dipole force. Later he sug-
gested three-dimensional traps for neutral atoms (1978).
The dipole force on neutral atoms was demontrated by
Bjorkholm et al. (1978) by focusing an atomic beam by

means of a focused laser beam. As a great breakthrough,
Chu et al. (1986) exploited this force to realize the first
optical trap for neutral atoms. After this demonstra-
tion, enormous progress in laser cooling and trapping was
made in many different directions, and much colder and
denser atomic samples became available for the efficient
loading of shallow dipole traps. In the early ’90s optical
dipole forces began to attract rapidly increasing interest
not only for atom trapping, but also in the emerging field
of atom optics (Adams et al., 1994).

In this review, we focus on dipole traps realized with
far-detuned light. In these traps an ultracold ensemble
of atoms is confined in a nearly conservative potential
well with very weak influence from spontaneous photon
scattering. The basic physics of the dipole interaction
is discussed in Sec. II. The experimental background of
dipole trapping experiments is then explained in Sec. III.
Specific trapping schemes and experiments are presented
in Secs. IV and V, where we explore the wide range of
applications of dipole traps considering particular exam-
ples.

II. OPTICAL DIPOLE POTENTIAL

Here we introduce the basic concepts of atom trapping
in optical dipole potentials that result from the interac-
tion with far-detuned light. In this case of particular in-
terest, the optical excitation is very low and the radiation
force due to photon scattering is negligible as compared
to the dipole force. In Sec. II A, we first consider the
atom as a simple classical or quantum-mechanical oscil-
lator to derive the main equations for the optical dipole
interaction. We then discuss the case of real multi-level
atoms in Sec. II B, in particular of alkali atoms as used
in the great majority of experiments. discussed

A. Oscillator model

The optical dipole force arises from the dispersive in-
teraction of the induced atomic dipole moment with the
intensity gradient of the light field (Askar’yan, 1962;
Kazantsev, 1973; Cook, 1979; Gordon and Ashkin, 1980).
Because of its conservative character, the force can be de-
rived from a potential, the minima of which can be used
for atom trapping. The absorptive part of the dipole
interaction in far-detuned light leads to residual photon
scattering of the trapping light, which sets limits to the
performance of dipole traps. In the following, we derive
the basic equations for the dipole potential and the scat-
tering rate by considering the atom as a simple oscillator
subject to the classical radiation field.
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1. Interaction of induced dipole with driving field

When an atom is placed into laser light, the electric
field E induces an atomic dipole moment p that oscil-
lates at the driving frequency ω. In the usual complex
notation E(r, t) = ê Ẽ(r) exp(−iωt) + c.c. and p(r, t) =
ê p̃(r) exp(−iωt) + c.c., where ê is the unit polarization
vector, the amplitude p̃ of the dipole moment is simply
related to the field amplitude Ẽ by

p̃ = α Ẽ . (1)

Here α is the complex polarizability, which depends on
the driving frequency ω.

The interaction potential of the induced dipole moment
p in the driving field E is given by

Udip = −
1

2
〈pE〉 = −

1

2ǫ0c
Re(α) I , (2)

where the angular brackets denote the time average
over the rapid oscillating terms, the field intensity is
I = 2ǫ0c|Ẽ|2, and the factor 1

2 takes into account that
the dipole moment is an induced, not a permanent one.
The potential energy of the atom in the field is thus pro-
portional to the intensity I and to the real part of the
polarizability, which describes the in-phase component
of the dipole oscillation being responsible for the disper-
sive properties of the interaction. The dipole force results
from the gradient of the interaction potential

Fdip(r) = −∇Udip(r) =
1

2ǫ0c
Re(α)∇I(r) . (3)

It is thus a conservative force, proportional to the inten-
sity gradient of the driving field.

The power absorbed by the oscillator from the driving
field (and re-emitted as dipole radiation) is given by

Pabs = 〈ṗE〉 = 2ω Im(p̃Ẽ∗) =
ω

ǫ0c
Im(α) I . (4)

The absorption results from the imaginary part of the
polarizability, which describes the out-of-phase compo-
nent of the dipole oscillation. Considering the light as a
stream of photons h̄ω, the absorption can be interpreted
in terms of photon scattering in cycles of absorption and
subsequent spontaneous reemisson processes. The corre-
sponding scattering rate is

Γsc(r) =
Pabs

h̄ω
=

1

h̄ǫ0c
Im(α) I(r) . (5)

We have now expressed the two main quantities of
interest for dipole traps, the interaction potential and
the scattered radiation power, in terms of the position-
dependent field intensity I(r) and the polarizability α(ω).
We point out that these expressions are valid for any po-
larizable neutral particle in an oscillating electric field.
This can be an atom in a near-resonant or far off-resonant
laser field, or even a molecule in an optical or microwave
field.

2. Atomic polarizability

In order to calculate its polarizability α, we first con-
sider the atom in Lorentz’s model of a classical oscillator.
In this simple and very useful picture, an electron (mass
me, elementary charge e) is considered to be bound elas-
tically to the core with an oscillation eigenfrequency ω0

corresponding to the optical transition frequency. Damp-
ing results from the dipole radiation of the oscillating
electron according to Larmor’s well-known formula (see,
e.g., Jackson, 1962) for the power radiated by an accel-
erated charge.

It is straightforward to calculate the polarizability by
integration of the equation of motion ẍ + Γωẋ + ω2

0x =
−eE(t)/me for the driven oscillation of the electron with
the result

α =
e2

me

1

ω2
0 − ω2 − iωΓω

(6)

Here

Γω =
e2ω2

6πǫ0mec3
(7)

is the classical damping rate due to the radiative en-
ergy loss. Substituting e2/me = 6πǫ0c

3Γω/ω2 and in-
troducing the on-resonance damping rate Γ ≡ Γω0

=
(ω0/ω)2Γω, we put Eq. 6 into the form

α = 6πǫ0c
3 Γ/ω2

0

ω2
0 − ω2 − i (ω3/ω2

0) Γ
. (8)

In a semiclassical approach, described in many text-
books, the atomic polarizability can be calculated by
considering the atom as a two-level quantum system in-
teracting with the classical radiation field. One finds
that, when saturation effects can be neglected, the semi-
classical calculation yields exactly the same result as the
classical calculation with only one modification: In gen-
eral, the damping rate Γ (corresponding to the sponta-
neous decay rate of the excited level) can no longer be
calculated from Larmor’s formula, but it is determined
by the dipole matrix element between ground and excited
state,

Γ =
ω3

0

3πǫ0h̄c3
|〈e|µ|g〉|2 . (9)

For many atoms with a strong dipole-allowed transition
starting from its ground state, the classical formula Eq. 7
nevertheless provides a good approximation to the spon-
taneous decay rate. For the D lines of the alkali atoms
Na, K, Rb, and Cs, the classical result agrees with the
true decay rate to within a few percent.

An important difference between the quantum-
mechanical and the classical oscillator is the possible oc-
curence of saturation. At too high intensities of the driv-
ing field, the excited state gets strongly populated and

3



the above result (Eq. 8) is no longer valid. For dipole
trapping, however, we are essentially interested in the
far-detuned case with very low saturation and thus very
low scattering rates (Γsc ≪ Γ). We can thus use ex-
pression Eq. 8 also as an excellent approximation for the
quantum-mechanical oscillator.

3. Dipole potential and scattering rate

With the above expression for the polarizability of the
atomic oscillator the following explicit expressions are de-
rived for the dipole potential and the scattering rate in
the relevant case of large detunings and negligible satu-
ration:

Udip(r) = −
3πc2

2ω3
0

(

Γ

ω0 − ω
+

Γ

ω0 + ω

)

I(r) , (10)

Γsc(r) =
3πc2

2h̄ω3
0

(

ω

ω0

)3 (
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) .

(11)

These general expressions are valid for any driving fre-
quency ω and show two resonant contributions: Besides
the usually considered resonance at ω = ω0, there is also
the so-called counter-rotating term resonant at ω = −ω0.

In most experiments, the laser is tuned relatively close
to the resonance at ω0 such that the detuning ∆ ≡ ω −
ω0 fulfills |∆| ≪ ω0. In this case, the counter-rotating
term can be neglected in the well-known rotating-wave
approximation (see, e.g., Allen and Eberly, 1972), and
one can set ω/ω0 ≈ 1. This approximation will be made
throughout this article with a few exceptions discussed
in Chapter IV.

In this case of main practical interest, the general ex-
pressions for the dipole potential and the scattering rate
simplify to

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r) , (12)

Γsc(r) =
3πc2

2h̄ω3
0

(

Γ

∆

)2

I(r) . (13)

The basic physics of dipole trapping in far-detuned laser
fields can be understood on the basis of these two equa-
tions. Obviously, a simple relation exists between the
scattering rate and the dipole potential,

h̄Γsc =
Γ

∆
Udip , (14)

which is a direct consequence of the fundamental rela-
tion between the absorptive and dispersive response of
the oscillator. Moreover, these equations show two very
essential points for dipole trapping:

• Sign of detuning: Below an atomic resonance
(“red” detuning, ∆ < 0) the dipole potential is
negative and the interaction thus attracts atoms
into the light field. Potential minima are therefore
found at positions with maximum intensity. Above
resonance (“blue” detuning, ∆ > 0) the dipole in-
teraction repels atoms out of the field, and poten-
tial minima correspond to minima of the intensity.
According to this distinction, dipole traps can be
divided into two main classes, red-detuned traps
(Sec. IV) and blue-detuned traps (Sec. V).

• Scaling with intensity and detuning: The dipole po-
tential scales as I/∆, whereas the scattering rate
scales as I/∆2. Therefore, optical dipole traps usu-
ally use large detunings and high intensities to keep
the scattering rate as low as possible at a certain
potential depth.

B. Multi-level atoms

In real atoms used for dipole trapping experiments, the
electronic transition has a complex sub-structure. The
main consequence is that the dipole potential in general
depends on the particular sub-state of the atom. This
can lead to some quantitative modifications and also in-
teresting new effects. In terms of the oscillator model
discussed before, multi-level atoms can be described by
state-dependent atomic polarizabilities. Here we use an
alternative picture which provides very intuitive insight
into the motion of multi-level atoms in far-detuned laser
fields: the concept of state-dependent ground-state po-
tentials (Dalibard and Cohen-Tannoudji, 1985, 1989).
Alkali atoms are discussed as a situation of great practical
importance, in order to clarify the role of fine-structure,
hyperfine-structure, and magnetic sub-structure.

1. Ground-state light shifts and optical potentials

The effect of far-detuned laser light on the atomic lev-
els can be treated as a perturbation in second order of the
electric field, i.e. linear in terms of the field intensity. As a
general result of second-order time-independent pertur-
bation theory for non-degenerate states, an interaction
(Hamiltonian H1) leads to an energy shift of the i-th
state (unperturbed energy Ei) that is given by

∆Ei =
∑

j 6=i

|〈j|H1|i〉|
2

Ei − Ej
. (15)

For an atom interacting with laser light, the interaction
Hamiltonian is H1 = −µ̂E with µ̂ = −er representing
the electric dipole operator. For the relevant energies Ei,
one has to apply a ‘dressed state’ view (Cohen-Tannoudji
et al., 1992), considering the combined system ‘atom plus
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field’. In its ground state the atom has zero internal en-
ergy and the field energy is nh̄ω according to the number
n of photons. This yields a total energy Ei = nh̄ω for
the unperturbed state. When the atom is put into an
excited state by absorbing a photon, the sum of its inter-
nal energy h̄ω0 and the field energy (n − 1)h̄ω becomes
Ej = h̄ω0 + (n− 1)h̄ω = −h̄∆ij + nh̄ω. Thus the denom-
inator in Eq. 15 becomes Ei − Ej = h̄∆ij

For a two-level atom, the interaction Hamiltonian is
H1 = −µE and Eq. 15 simplifies to

∆E = ±
|〈e|µ|g〉|2

∆
|E|2 = ±

3πc2

2ω3
0

Γ

∆
I (16)

for the ground and excited state (upper and lower sign,

respectively); we have used the relation I = 2ǫ0c|Ẽ|2,
and Eq. 9 to substitute the dipole matrix element with
the decay rate Γ. This perturbative result obtained for
the energy shifts reveals a very interesting and important
fact: The optically induced shift (known as ‘light shift’ or
‘ac Stark shift’) of the ground-state exactly corresponds
to the dipole potential for the two-level atom (Eq. 12);
the excited state shows the opposite shift. In the inter-
esting case of low saturation, the atom resides most of
its time in the ground state and we can interpret the
light-shifted ground state as the relevant potential for the
motion of atoms. This situation is illustrated in Fig. 1.

ωh

E

0

ωh
excited
state

state
ground

0

FIG. 1. Light shifts for a two-level atom. Left-hand side,
red-detuned light (∆ < 0) shifts the ground state down and the
excited state up by same amounts. Right-hand side, a spatially
inhomogeneous field like a Gaussian laser beam produces a
ground-state potential well, in which an atom can be trapped.

For applying Eq. 15 to a multi-level atom with transi-
tion substructure1, one has to know the dipole matrix el-
ements µij = 〈ei|µ|gi〉 between specific electronic ground

1Perturbation theory for non-degenerate states can be ap-
plied in the absence of any coupling between degenerate
ground states. This is the case for pure linear π or circular
σ± polarization, but not for mixed polarizations where Ra-
man couplings between different magnetic sub-states become
important; see, e.g., Deutsch and Jessen (1997).

states |gi〉 and excited states |ej〉. It is well-known in
atomic physics (see, e.g., Sobelman, 1979) that a specific
transition matrix element

µij = cij ‖µ‖ , (17)

can be written as a product of a reduced matrix element
‖µ‖ and a real transition coefficient cij . The fully reduced
matrix element depends on the electronic orbital wave-
functions only and is directly related to the spontaneous
decay rate Γ according to Eq. 9. The coefficients cij ,
which take into account the coupling strength between
specific sub-levels i and j of the electronic ground and
excited state, depend on the laser polarization and the
electronic and nuclear angular momenta involved. They
can be calculated in the formalim of irreducible tensor
operators or can be found in corresponding tables.

With this reduction of the matrix elements, we can
now write the energy shift of an electronic ground state
|gi〉 in the form

∆Ei =
3πc2 Γ

2ω3
0

I ×
∑

j

c2
ij

∆ij
, (18)

where the summation is carried out over all electron-
ically excited states |ej〉 . This means, for a calcula-
tion of the state-dependent ground-state dipole potential
Udip, i = ∆Ei, one has to sum up the contributions of all
coupled excited states, taking into account the relevant
line strengths c2

ij and detunings ∆ij .

2. Alkali atoms

Most experiments in laser cooling and trapping are
performed with alkali atoms because of their closed opti-
cal transitions lying in a convenient spectral range. The
main properties of alkali atoms of relevance for dipole
trapping are summarized in Table I. As an example, the
full level scheme of the relevant n s → n p transition is
shown in Fig. 2(a) for a nuclear spin I = 3

2 , as in the

case of 7Li, 23Na, 39, 41K, and 87Rb. Spin-orbit coupling
in the excited state (energy splitting h̄∆′

FS) leads to the
well-known D line doublet 2S1/2 →2 P1/2,

2 P3/2. The
coupling to the nuclear spin then produces the hyperfine
structure of both ground and excited states with energies
h̄∆HFS and h̄∆′

HFS, respectively. The splitting energies,
obeying ∆′

FS ≫ ∆HFS ≫ ∆′
HFS, represent the three rele-

vant atomic energy scales.
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∆,
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2
1P

2

P
2

2
1

2
1

2
3

2
1

0

L=0

L’=1

(b)

J’=

J’=
(c)

J =

HFS∆

HFS∆,

F=2

F=1

F’=2

F’=1

(a) F’=3

2
3

2
S

ω

FIG. 2. Level scheme of an alkali atom: (a) full sub-
structure for a nuclear spin I = 3

2
, (b) reduced scheme

for very large detunings exceeding the fine-structure splitting
(|∆| ≫ ∆′

FS), and (c) reduced scheme for large detunings in
the range ∆′

FS
>
∼ |∆| ≫ ∆HFS, ∆′

HFS.

On the basis of Eq. 18, one can derive a general result
for the potential of a ground state with total angular
momentum F and magnetic quantum number mF , which
is valid for both linear and circular polarization as long
as all optical detunings stay large 2 compared with the
excited-state hyperfine splitting ∆′

HFS:

Udip(r) =
πc2 Γ

2ω3
0

(

2 + PgF mF

∆2, F
+

1 − PgF mF

∆1, F

)

I(r) .

(19)

Here gF is the well-known Landé factor and P charac-
terizes the laser polarization (P = 0,±1 for linearly and
circularly σ± polarized light). The detunings ∆2, F and
∆1, F refer to the energy splitting between the particular
ground state 2S1/2, F and the center of the hyperfine-

split 2P3/2 and 2P1/2 excited states, respectively. The
two terms in brackets of Eq. 19 thus represent the con-
tributions of the D2 and the D1 line to the total dipole
potential.

2The assumption of unresolved excited-state hyperfine struc-
ture greatly simplifies the calculation according to Eq. 18 be-
cause of existing sum rules for the line strength coefficients
c2

ij ; see also Deutsch and Jessen (1997).

In order to discuss this result, let us first consider
the case of very large detunings greatly exceeding the
fine-structure splitting (|∆F, 1|, |∆F, 2| ≫ ∆′

FS), in which
we can completely neglect the even much smaller hyper-
fine splitting. Introducing a detuning ∆ with respect to
the center of the D-line dublett, we can linearly expand
Eq. 19 in terms of the small parameter ∆′

FS/∆:

Udip(r) =
3πc2

2ω3
0

Γ

∆

(

1 +
1

3
PgF mF

∆′
FS

∆

)

I(r) . (20)

While the first-order term describes a small residual de-
pendence on the polarization P and the magnetic sub-
state mF , the dominating zero-order term is just the re-
sult obtained for a two-level atom (Eq. 12). The latter
fact can be understood by a simple argument: If the
fine-structure is not resolved, then the detuning repre-
sents the leading term in the total Hamiltonian and the
atomic sub-structure can be ignored in a first perturba-
tive step by reducing the atom to a very simple s → p
transition; see Fig. 2(b). Such a transition behaves like a
two-level atom with the full line strength for any laser po-
larization, and the ground-state light shift is thus equal
to the one of a two-level atom. This single ground state
couples to the electronic and nuclear spin in exactly the
same way as it would do without the light. In this sim-
ple case, all resulting hyperfine and magnetic substates
states directly acquire the light shift of the initial atomic
s state.

In the more general case of a resolved fine-
structure, but unresolved hyperfine structure (∆′

FS
>
∼

|∆F, 1|, |∆F, 2| ≫ ∆HFS), one may first consider the atom
in spin-orbit coupling, neglecting the coupling to the nu-
clear spin. The interaction with the laser field can thus
be considered in the electronic angular momentum con-
figuration of the two D lines, J = 1

2 → J ′ = 1
2 , 3

2 . In
this situation, illustrated in Fig. 2(c), one can first cal-
culate the light shifts of the two electronic ground states
mJ = ± 1

2 , and in a later step consider their coupling to
the nuclear spin. In this situation, it is important to dis-
tinguish between linearly and circularly polarized light:

For linear polarization, both electronic ground states
(mJ = ± 1

2 ) are shifted by the same amount because of
simple symmetry reasons. After coupling to the nuclear
spin, the resulting F, mF states have to remain degen-
erate like the two original mJ states. Consequently, all
magnetic sublevels show the same light shifts according
to the line strength factors of 2/3 for the D2 line and 1/3
for the D1 line.

For circular polarization (σ±), the light lifts the de-
generacy of the two magnetic sublevels of the electronic
2S 1

2

ground state, and the situation gets more compli-

cated. The relevant line strength factors are then given
by 2

3 (1 ± mJ) for the D2 line and 1
3 (1 ∓ 2mJ) for the

D1 line. The lifted degeneracy of the two ground states
can be interpreted in terms of a ‘fictitous magnetic field’
(Cohen-Tannoudji and Dupont-Roc, 1972; Cho, 1997;
Zielonkowski et al., 1998a), which is very useful to un-
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derstand how the lifted mJ degeneracy affects the F, mF

levels after coupling to the nuclear spin. According to
the usual theory of the linear Zeeman effect in weak mag-
netic fields, coupling to the nuclear spin affects the mag-
netic sub-structure such that one has to replace gJmJ by
gF mF , with gJ and gF denoting the ground state Landé
factors. Using this analogy and gJ = 2 for alkali atoms,
we can substitute mJ by 1

2gF mF to calculate the relevant

line strength factors 1
3 (2 ± gF mF ) and 1

3 (1 ∓ gF mF ) for
the D2 and the D1 line, respectively. These factors lead
to the mF dependent shifts for circularly polarized light
in Eq. 19. One finds that this result stays valid as long as
the excited-state hyperfine splitting remains unresolved.

For the photon scattering rate Γsc of a multi-level atom,
the same line strength factors are relevant as for the
dipole potential, since absorption and light shifts are de-
termined by the same transititon matrix elements. For
linear polarization, in the most general case ∆ ≫ ∆′

HFS
considered here, one thus explicitely obtains

Γsc(r) =
πc2 Γ2

2h̄ω3
0

(

2

∆ 2
2,F

+
1

∆ 2
1,F

)

I(r) (21)

This result is independent of mF , but in general depends
on the hyperfine state F via the detunings. For lin-
early polarized light, optical pumping tends to equally
distribute the population among the different mF states,
and thus leads to complete depolarization. If the de-
tuning is large compared to the ground-state hyperfine
splitting, then all sub-states F, mF are equally populated
by redistribution via photon scattering. For circular po-
larization, Zeeman pumping effects become very impor-
tant, which depend on the particular detuning regime
and which we do not want to discuss in more detail here.
It is interesting to note that the general relation between
dipole potential and scattering rate takes the simple form
of Eq. 14 either if the contribution of one of the two D
lines dominates for rather small detunings or if the de-
tuning is large compared to the fine-structure splitting.

Our discussion on multi-level alkali atoms shows that
linearly polarized light is usually the right choice for a
dipole trap3, because the magnetic sub-levels mF of a
certain hyperfine ground-state F are shifted by same
amounts. This only requires a detuning large compared
to the excited-state hyperfine splitting, which is usually
very well fulfilled in dipole trapping experiments. If the
detuning also exceeds the ground-state hyperfine split-
ting then all sub-states of the electronic ground state are
equally shifted, and the dipole potential becomes com-
pletely independent of mF and F . For circularly polar-
ized light there is a mF -dependent contribution, which
leads to a splitting analogous to a magnetic field. This

3an interesting exception is the work by Corwin et al. (1997)
on trapping in circularly polarized light; see also Sec. IVA2.

term vanishes only if the optical detuning greatly exceeds
the fine-structure splitting.

III. EXPERIMENTAL ISSUES

Here we discuss several issues of practical importance
for experiments on dipole trapping. Cooling and heating
in the trap is considered in Sec. III A, followed by a sum-
mary of the typical experimental procedures in Sec. III B.
Finally, the particular role of collisions is discussed in
Sec. III C.

A. Cooling and heating

Atom trapping in dipole potentials requires cooling to
load the trap and eventually also to counteract heating in
the dipole trap. We briefly review the various available
cooling methods and their specific features with respect
to dipole trapping. Then we discuss sources of heating,
and we derive explicite expressions for the heating rate
in the case of thermal equilibrium in a dipole trap. This
allows for a direct comparison between dipole traps op-
erating with red and blue detuning.

1. Cooling methods

Efficient cooling techniques are an essential require-
ment to load atoms into a dipole trap since the attainable
trap depths are generally below 1mK. Once trapped, fur-
ther cooling can be applied to achieve high phase-space
densities and to compensate possible heating mechanisms
(see Sec. III A 2) which would otherwise boil the atoms
out of the trap. The development of cooling methods
for neutral atoms has proceeded at breathtaking speed
during the last decade, and numerous excellent reviews
have been written illuminating these developments (Foot,
1991; Arimondo et al., 1992; Metcalf and van der Straten,
1994; Sengstock and Ertmer, 1995; Ketterle and van
Druten, 1996; Adams and Riis, 1997; Chu, 1998; Cohen-
Tannoudji, 1998; Phillips, 1998). In this section, we
briefly discuss methods which are of relevance for cooling
atoms in dipole traps. Chapters IV and V describe the
experimental implementations of the cooling schemes to
particular trap configurations.

Doppler cooling. Doppler cooling is based on cycles
of near-resonant absorption of a photon and subsequent
spontaneous emission resulting in a net atomic momen-
tum change per cycle of one photon momentum h̄k with
k = 2π/λ denoting the wavenumber of the absorbed pho-
ton. Cooling is counteracted by heating due to the mo-
mentum fluctuations by the recoil of the spontaneously
emitted photons (Minogin and Letokhov, 1987). Equilib-
rium between cooling and heating determines the lowest
achievable temperature. For Doppler cooling of two-level
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atoms in standing waves (“optical molasses”), the min-
imum temperature is given by the Doppler temperature
kBTD = h̄Γ/2. Typical values of the Doppler tempera-
ture are around 100 µK, which is just sufficiently low to
load atoms into a deep dipole trap. The first demonstra-
tion of dipole trapping (Chu et al., 1986) used Doppler
cooling for loading the trap and keeping the atoms from
being boiled out of the trap. With the discovery of meth-
ods reaching much lower temperatures, Doppler cooling
has lost its importance for the direct application to dipole
traps.

Polarization-gradient cooling. The Doppler tempera-
ture is a somewhat artificial limit since it is based on
the simplifying assumption of a two-level atom. It was
soon discovered that atoms with a more complex level
structure can be cooled below TD in standing waves with
spatially varying polarizations (Lett et al., 1988). The
cooling mechanisms are based on optical pumping be-
tween ground state Zeeman sublevels. The friction force
providing cooling results either from unbalanced radia-
tion pressures through motion-induced atomic orienta-
tion, or from a redistribution among the photons in the
standing wave (Dalibard and Cohen-Tannoudji, 1989).
In the latter case, the cooling force can be illustratively
explained by the so-called Sisyphus effect for a moving
atom. The atom looses kinetic energy by climbing up
the dipole potential induced by the standing wave of
the trapping light. When reaching the top of this po-
tential hill, the atom is optically pumped back into the
bottom of the next potential valley from where again it
starts to climb (Dalibard and Cohen-Tannoudji, 1985).
Polarization-gradient cooling can be achieved in stand-
ing waves at frequencies below an atomic resonance (red-
detuned molasses) (Lett et al., 1988; Salomon et al., 1990)
as well as above an atomic resonance (blue-detuned mo-
lasses) (Boiron et al., 1995; Hemmerich et al., 1995). In
blue-detuned molasses, atoms primarily populate states
which are decoupled from the light field resulting in a re-
duction of photon scattering, but also in a smaller cooling
rate as compared to red-detuned molasses (Boiron et al.,
1996).

With polarization-gradient molasses one can prepare
free-space atomic samples at temperatures on the order
of ∼ 10Trec with the recoil temperature

Trec =
h̄2k2

m
(22)

being defined as the temperature associated with the ki-
netic energy gain by emission of one photon. For the
alkali atoms, recoil temperatures are given in Table I.
The achievable temperatures are much below the typi-
cal depth of a dipole trap. Polarization-gradient cooling
therefore allows efficient loading of dipole traps (see Sec.
III B 1), either by cooling inside a magneto-optical trap
(Steane and Foot, 1991) or by cooling in a short molasses
phase before transfer into the dipole trap.

Besides enhancing the loading efficiency, polarization-
gradient cooling was directly applied to atoms trapped

in a dipole potential by subjecting them to near-resonant
standing waves with polarization gradients (Boiron et al.,
1998; Winoto et al., 1998). Since the cooling mechanism
relies on the modification of the ground-state sublevels by
the cooling light, a necessary condition for efficient cool-
ing is the independency of the trapping potential from the
Zeeman substate which, in contrast to magnetic traps,
can easily be fulfilled in dipole traps as explained in Sec.
II B 2.

Raman cooling. The recoil temperature marks the
limit for cooling methods based on the repeated absorp-
tion and emission of photons such as Doppler cooling and
polarization-gradient cooling. To overcome this limit,
different routes were explored to decouple the cold atoms
from the resonant laser excitation once they have reached
small velocities. All approaches are based upon transi-
tions with a narrow line width which are thus extremely
velocity-selective such as dark-state resonances (Aspect
et al., 1988) or Raman transition between ground state
sublevels (Kasevich and Chu, 1992). With free atomic
samples, the interaction time, and thus the spectral reso-
lution determining the final temperature, was limited by
the time the thermally expanding atomic cloud spent in
the laser field (Davidson et al., 1994). Taking advantage
of the long storage times in dipole traps, Raman cooling
was shown to efficiently work for trapped atomic samples
(Lee et al., 1994; Lee et al., 1996; Kuhn et al., 1996).

The basic principle of Raman cooling is the follow-
ing. Raman pulses from two counter-propagating laser
beams transfer atoms from one ground state |1〉 to an-
other ground state |2〉 transferring 2h̄k momentum 4. Us-
ing sequences of Raman pulses with varying frequency
width, detuning, and propagation direction, pulses can
be tailored which excite all atoms except those with a
velocity near v = 0 (Kasevich et al., 1992; Reichel et
al., 1995; Kuhn et al., 1996). The cooling cycle is com-
pleted by a light pulse resonantly exciting atoms in state
|2〉 in order to optically pump the atoms back to the |1〉
state through spontaneous emission. Each spontaneous
emission randomizes the velocity distribution so that a
fraction of atoms will acquire a velocity v ≈ 0. By re-
peating many sequences of Raman pulses followed by op-
tical pumping pulses, atoms are accumulated in a small
velocity interval around v = 0. The final width of the
velocity distribution, i.e. the temperature, is determined
by the spectral resolution of the Raman pulses. In dipole
traps, high resolution can be achieved by the long storage
times. In addition, motional coupling of the degrees of
freedom through the trap potential allowed to cool the
atomic motion in all three dimensions with Raman pulses
applied along only one spatial direction (Lee et al., 1996;
Kuhn et al., 1996).

4The two states are, e.g., the two hyperfine ground states of
an alkali atom.
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Resolved-sideband Raman cooling. Cooling with well-
resolved motional sidebands, a technique well known
from laser cooling in ion traps (Ghosh, 1995), was very
recently also applied to optical dipole traps (Hamann et
al., 1998; Perrin et al., 1998; Vuletic et al., 1998; Bou-
choule et al.; 1998). For resolved-sideband cooling, atoms
must be tightly confined along (at least) one spatial di-
mension with oscillation frequencies ωosc large enough to
be resolved by Raman transitions between two ground
state levels. In contrast to Raman cooling explained in
the preceeding paragraph, the confining potential of the
trap is therefore a necessary prerequisite for the applica-
tion of sideband cooling.

Atomic motion in the tightly confining potential is de-
scribed by a wavepacket formed by the superposition
of vibrational states |nosc〉. In the Lamb-Dicke regime,
where the rms size of the wavepacket is small compared to
the wavelength of the cooling transition, an absorption-
spontaneous emission cycle almost exclusively returns to
the same vibrational state it started from (∆nosc = 0).
The Lamb-Dicke regime is reached by trapping atoms in
dipole potentials formed in the interference pattern of far-
detuned laser beams (see Secs. IVB and IVC). Sideband
cooling consists of repeated cycles of Raman pulses which
are tuned to excite transitions with ∆nosc = −1 followed
by an optical pumping pulse involving spontaneous emis-
sion back to the initial state with ∆nosc = 0. In this way,
the motional ground state nosc = 0 is selectively popu-
lated since it is the only state not interacting with the
Raman pulses. Achievable temperatures are only limited
by the separation and the width of the Raman sidebands
determining the suppression of off-resonant excitation of
the nosc = 0 state.

A particularly elegant realization of sideband cooling
was accomplished by using the trapping light itself to
drive the Raman transition instead of applying additional
laser fields (Hamann et al, 1998; Vuletic et al., 1998). For
this purpose, a small magnetic field was applied shifting
the energy of two adjacent ground-state Zeeman sublevels
relative to each other by exactly one vibrational quan-
tum h̄ωosc. In this way, the bound states |mF ; nosc〉 and
|mF −1; nosc−1〉 became degenerate, and Raman transi-
tions between the two states could be excited with single-
frequency light provided by the trapping field (degenerate
sideband cooling) (Deutsch and Jessen, 1998). The great
advantage of degenerate sideband cooling is that works
with only the two lowest-energy atomic ground states be-
ing involved, resulting in the suppression of heating and
trap losses caused by inelastic binary collisions (see Sec.
III C).

Evaporative cooling. Evaporative cooling, orginally
demonstated with magnetically trapped hydrogen (Hess
et al., 1987), has been the key technique to achieve Bose-
Einstein condensation in magnetic traps (Ketterle and
van Druten, 1996). It relies on the selective removal
of high-energetic particles from a trap and subsequent
thermalization of the remaining particles through elastic
collisions. Evaporative cooling requires high densities to

assure fast thermalization rates, and large initial parti-
cle numbers since a large fraction of trapped atoms is
removed from the trap by evaporation. To become effec-
tive, the ratio between inelastic collisions causing losses
and heating, and elastic collisions providing thermaliza-
tion and evaporation, has to be large.

In dipole traps, inelastic processes can be greatly sup-
pressed when the particles are prepared in their energet-
ically lowest state. However, the requirement of large
particle numbers and high density poses a dilemma for
the application of evaporative cooling to dipole traps. In
tightly confining dipole traps such as a crossed dipole
trap, high peak densities can be reached, but the trap-
ping volume, and thus the number of particles transferred
into the trap, is small. On the other hand, large trap-
ping volumes yielding large numbers of trapped particles
provide only weak confinement yielding small elastic col-
lision rates. This is why, until now, only one experiment
is reported on evaporative cooling in dipole traps start-
ing with a small sample of atoms (Adams et al., 1995).
By precooling large ensembles in dipole traps with op-
tical methods explained in the preceeding paragraphs,
much better starting conditions for evaporative cooling
are achievable (Engler et al., 1998; Vuletic et al., 1998;
Winoto et al., 1998) making evaporative cooling a still
interesting option for future applications.

Adiabatic expansion. When adiabatically expanding
a potential without changing its shape, the temperature
of the confined atoms is decreased without increasing the
phase-space density 5. In dipole potentials, cooling by
adiabatic expansion was realized by slowly ramping down
the trapping light intensity (Chen et al., 1992; Kastberg
et al., 1995). In far-detuned traps consisting of micropo-
tentials induced by interference, adiabatic cooling is par-
ticularly interesting when the modulation on the scale of
the optical wavelength is slowly reduced without modi-
fying the large-scale trapping potential, by, e.g. changing
the polarization of the interfering laser beams. Atoms
are initially strongly localized in the micropotentials re-
sulting in high peak densities. After adiabatic expansion,
the temperature of the sample is reduced, as is the peak
density. However, the density averaged over one period
of the interference structure is not modified.

2. Heating mechanisms

Heating by the trap light is an issue of particular
importance for optical dipole trapping. A fundamen-
tal source of heating is the spontaneous scattering of
trap photons, which due to its random nature causes

5Adiabatic changes of the potential shape leading to an in-
crease of the phase-space density are demonstrated in (Pinkse
et al., 1997) and (Stamper-Kurn et al., 1998b).
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fluctuations of the radiation force6. In the far-detuned
case considered here, the scattering is completely elastic
(or quasi-elastic if a Raman process changes the atomic
ground state). This means that the energy of the scat-
tered photon is determined by the frequency of the laser
and not of the optical transition.

Both absorption and spontaneous re-emission pro-
cesses show fluctuations and thus both contribute to the
total heating (Minogin and Letokhov, 1987). At large de-
tunings, where scattering processes follow Poisson statis-
tics, the heating due to fluctuations in absorption corre-
sponds to an increase of the thermal energy by exactly
the recoil energy Erec = kBTrec/2 per scattering event.
This first contribution occurs in the propagation direc-
tion of the light field and is thus anisotropic (so-called
directional diffusion). The second contribution is due to
the random direction of the photon recoil in spontaneous
emission. This heating also increases the thermal energy
by one recoil energy Erec per scattering event, but dis-
tributed over all three dimensions. Neglecting the gen-
eral dependence on the polarization of the spontaneously
emitted photons, one can assume an isotropic distribu-
tion for this heating mechanism. Taking into account
both contributions, the longitudinal motion is heated on
an average by 4Erec/3 per scattering process, whereas
the two transverse dimensions are each heated by Erec/3.
The overall heating thus corresponds to an increase of the
total thermal energy by 2Erec in a time Γ̄−1

sc .
For simplicity, we do not consider the generally

anisotropic character of heating here; in most cases of
interest the trap anyway mixes the motional degrees on
a time scale faster than or comparable to the heating.
We can thus use a simple global three-dimensional heat-

ing power Pheat = ˙̄E corresponding to the increase of the
mean thermal energy Ē of the atomic motion with time.
This heating power is directly related to the average pho-
ton scattering rate Γ̄sc by

Pheat = 2Erec Γ̄sc = kBTrec Γ̄sc . (23)

For intense light fields close to resonance, in partic-
ular in standing-wave configurations, it is well known
that the induced redistribution of photons between dif-
ferent traveling-wave components can lead to dramatic
heating (Gordon and Ashkin, 1980; Dalibard and Cohen-
Tannoudji, 1985). In the far off-resonant case, however,
this induced heating falls off very rapidly with the detun-
ing and is usually completely negligible as compared to
spontaneous heating.

In addition to the discussed fundamental heating in
dipole traps, it was recently pointed out by Savard et

6Under typical conditions of a dipole trap, the scatter-
ing force that results in traveling-wave configurations stays
very weak as compared to the dipole force and can thus be
neglected.

al. (1997), that technical heating can occur due to inten-
sity fluctuations and pointing instabilities in the trapping
fields. In the first case, fluctuations occuring at twice the
characteristic trap frequencies are relevant, as they can
parametrically drive the oscillatory atomic motion. In
the second case, a shaking of the potential at the trap
frequencies increases the motional amplitude. Experi-
mentally, these issues will strongly depend on the par-
ticular laser source and its technical noise spectrum, but
have not been studied in detail yet. Several experiments
have indeed shown indications for heating in dipole traps
by unidentified mechanisms (Adams et al., 1995; Lee et
al., 1996; Zielonkowski et al., 1998b; Vuletic et al., 1998),
which may have to do with fluctuations of the trapping
light.

3. Heating rate

For an ultracold atomic gas in a dipole trap it is often
a good assumption to consider a thermal equilibrium sit-
uation, in which the energy distribution is related to a
temperature T . The further assumption of a power-law
potential then allows one to derive very useful expressions
for the mean photon scattering rate and the correspond-
ing heating rate of the ensemble, which also illustrate
important differences between traps operating with red
and blue detuned light.

In thermal equilibrium, the mean kinetic energy per
atom in a three-dimensional trap is Ēkin = 3kBT/2. In-
troducing the parameter κ ≡ Ēpot/Ēkin as the ratio of
potential and kinetic energy, we can express the mean
total energy Ē as

Ē =
3

2
(1 + κ) kBT . (24)

For many real dipole traps as described in Secs. IV
and V, it is a good approximation to assume a separable
power-law potential with a constant offset U0 of the form

U(x, y, z) = U0 + a1x
n1 + a2y

n2 + a3z
n3 . (25)

In such a case, the virial theorem can be used to calculate
the ratio between potential and kinetic energy

κ =
2

3

(

1

n1
+

1

n2
+

1

n3

)

. (26)

For a 3D harmonic trap this gives κ = 1, for an ideal 3D
box potential κ = 0.

The relation between mean energy and temperature
(Eq. 24) allows us to reexpress the heating power result-
ing from photon scattering (Eq. 23) as a heating rate

Ṫ =
2/3

1 + κ
Trec Γ̄sc , (27)

describing the corresponding increase of temperature
with time.
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The mean scattering rate Γ̄sc can, in turn, be calcu-
lated from the temperature of the sample, according to
the following arguments: Eq. 14 relates the average scat-
tering rate to the mean dipole potential Ūdip experienced
by the atoms. In a pure dipole trap7 described by Eq. 25,
the mean optical potential is related to the mean poten-
tial energy Ēpot, the mean kinetic energy Ēkin, and the
temperature T by

Ūdip = U0 + Ēpot = U0 + κĒkin = U0 +
3κ

2
T . (28)

This relation allows us to express the mean scattering
rate as

Γ̄sc =
Γ

h̄∆
(U0 +

3κ

2
kBT ) . (29)

Based on this result, let us now discuss two specific
situations which are typical for real experiments as de-
scribed in Secs. IV and V; see illustrations in Fig. 3. In a
red-detuned dipole trap (∆ < 0), the atoms are trapped
in an intensity maximum with U0 < 0, and the trap depth
Û = |U0| is usually large compared to the thermal energy
kBT . In a blue-detuned trap (∆ > 0), a potential mini-
mum corresponds to an intensity minimum, which in an
ideal case means zero intensity. In this case, U0 = 0 and
the potential depth Û is determined by the height of the
repulsive walls surrounding the center of the trap.

For red and blue-detuned traps with Û ≫ kBT , Eqs. 27
and 29 yield the following heating rates:

Ṫred =
2/3

1 + κ
Trec

Γ

h̄|∆|
Û , (30a)

Ṫblue =
κ

1 + κ
Trec

Γ

h̄∆
kBT . (30b)

Obviously, a red-detuned trap shows linear heating
(which decreases when kBT approaches Û), whereas
heating behaves exponentially in a blue-detuned trap.
Note that in blue-detuned traps a fundamental lower
limit to heating is set by the zero-point energy of the
atomic motion, which we have neglected in our classical
consideration.

7this excludes hybrid potentials in which other fields (grav-
ity, magnetic or electric fields) are important for the trapping.

U
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FIG. 3. Illustration of dipole traps with red and blue de-
tuning. In the first case, a simple Gaussian laser beam is
assumed. In the second case, a Laguerre-Gaussian LG01

“doughnut” mode is chosen which provides the same potential
depth and the same curvature in the trap center (note that
the latter case requires e2 times more laser power or smaller
detuning).

Eqs. 30 allow for a very illustrative direct comparison
between a blue and a red-detuned trap: The ratio of
heating at the same magnitude of detuning |∆| is given
by

Ṫblue

Ṫred

=
3κ

2

kBT

Û
. (31)

This comparison shows that blue detuning offers substan-
tial advantages in two experimental situations:

• Û ≫ kBT , very deep potentials for tight confine-
ment,

• κ ≪ 1, box-like potentials with hard repulsive
walls.

When, in other words, a harmonic potential of moderate
depth is to be realized for a certain experiment, the ad-
vantage of blue detuning is not substantial. The choice of
red detuning may be even more appropriate as the better
concentration of the available laser power in such a trap
allows one to use larger detunings to create the required
potential depth.

B. Experimental techniques

1. Trap loading

The standard way to load a dipole trap is to start
from a magneto-optical trap (MOT). This well-known
radiation-pressure trap operating with near-resonant
light was first demonstrated by Raab et al. in 1987 and
has now become the standard source of ultracold atoms in
many laboratories all over the world. A MOT can provide
temperatures down to a few 10Trec, when its operation
is optimized for sub-Doppler cooling (see Sec. III A 1).
This sets a natural scale for the minimum depth of a
dipole trap as required for efficient loading. Due to their
lower recoil temperatures (Table I), heavier alkali atoms
require less trap depth as the lighter ones and thus allow
for larger detunings. For the heavy Cs atoms, for exam-
ple, dipole traps with depths as low as ∼ 10µK can be

11



directly loaded from a MOT (Zielonkowski et al., 1998b).
Trap loading at much lower depths can be reached with
Bose-Einstein condensates (Stamper-Kurn et al., 1998).

For dipole-trap loading, a MOT is typically operated in
two stages. First, its frequency detuning is set quite close
to resonance (detuning of a few natural linewidths) to op-
timize capture by the resonant scattering force. Then, af-
ter the loading phase, the MOT parameters are changed
to optimize sub-Doppler cooling (Drewsen et al., 1994;
Townsend et al., 1995). Most importantly, the detun-
ing is switched to much higher values (typically 10 – 20
linewidths), and eventually also the laser intensity is low-
ered. For the heavier alkali atoms8, this procedure pro-
vides maximum phase-space densities for trap loading.
Another option is to ramp up the magnetic fields of the
MOT to spatially compress the sample (Petrich et al.,
1994).

The dipole trap is filled by simply overlapping it with
the atomic cloud in the MOT, before the latter is turned
off. In this procedure, it is advantageous to switch off
the magnetic field of the MOT a few ms before the laser
fields are extinguished, because the short resulting opti-
cal molasses cooling phase establishes the lowest possi-
ble temperatures and a quasi-thermal distribution in the
trap. For practical reasons, the latter is important be-
cause a MOT does not necessarily load the atoms into
the very center of the dipole trap. When MOT position
and dipole trap center do not coincide exactly, loading re-
sults in excess potential energy in the dipole trap. When
the MOT light is extinguished, it is very important to
shield the dipole trap from any resonant stray light, in
particular if very low scattering rates (<∼ 1 s−1) are to be
reached.

The MOT itself can be loaded in a simple vapor cell
(Monroe et al., 1990). In such a set-up, however, the life-
time of the dipole trap is typically limited to less than 1 s
by collsions with atoms in the background gas. If longer
lifetimes are requested for a certain application, the load-
ing of the MOT under much better vacuum conditions
becomes an important issue, similar to experiments on
Bose-Einstein condensation. Loading can then be ac-
complished from a very dilute vapor (Anderson et al.,
1994), but more powerful concepts can be realized with
a Zeeman-slowed atomic beam (Phillips and Metcalf,
1982), with a double-MOT set-up (Myatt et al., 1997),
or with slow-atom sources based on modified MOTs (Lu
et al., 1996, Dieckmann et al., 1998).

Regarding trap loading, a dipole trap with red detun-
ing can offer an important advantage over a blue-detuned
trap: When MOT and dipole trap are simultaneously

8The lightest alkali atom Li behaves in a completely dif-
ferent way: Here optimum loading is accomplished at larger
detunings and optimum cooling is obtained relatively close to
resonance (Schünemann et al., 1998)

turned on, the attractive dipole potential leads to a lo-
cal density increase in the MOT, which can substantially
enhance the loading process. In very deep red-detuned
traps, however, the level shifts become too large for the
cooling light and efficient loading requires rapid alterna-
tion between cooling and trapping light (Miller et al.,
1993).

2. Diagnostics

The atomic sample in a dipole trap is characterized by
the number of stored atoms, the motional temperature
of the ensemble (under the assumption of thermal dis-
tribution), and the distribution of population among the
different ground-state sub-levels. Measurements of these
important quantities can be made in the following ways.

Number of atoms. A very simple and efficient
method, which is often used to determine the number
of atoms in a dipole trap is to recapture them into the
MOT and to measure the power of the emitted fluores-
cence light with a calibrated photo-diode or CCD camera.
In this way, it is quite easy to detect down to about one
hundred atoms, but even single atoms may be observed
in a more elaborate set-up (Haubrich et al., 1996). This
recapture method works particularly well if it is ensured
that the MOT does not capture any other atoms than
those released from the dipole trap. This is hardly pos-
sible in a simple vapor-cell set-up, but quite easy if an
atomic beam equipped with a mechanical shutter is used
for loading the MOT.

In contrast to the completely destructive recapture,
several other methods may be applied. The trapped
atoms can be illuminated with a short resonant laser
pulse of moderate intensity to measure the emitted flu-
orescence light. This can be done also with spatial res-
olution by using a CCD camera; see Fig. 18(b) for an
example. If the total number of atoms is not too low, the
detection pulse can be kept weak enough to avoid trap
loss by heating. Furthermore, absorption imaging can
be used (see Fig. 7), or even more sensitive and less de-
structive dark-field or phase-contrast imaging methods as
applied to sensitively monitor Bose-Einstein condensates
(Andrews et al., 1996; Bradley et al., 1997; Andrews et
al., 1997).

Temperature. In a given trapping potential U(r) the
thermal density distribution n(r) direct follows from the
Boltzmann factor,

n(r) = n0 exp

(

−
U(r)

kBT

)

. (32)

The temperature can thus be derived from the measured
spatial density distribution in the trap, which itself can
be observed by various imaging methods (fluorescence,
absorptive, and dispersive imaging). For a 3D harmonic
potential U(r) = 1

2m (ω2
xx2 + ω2

yy2 + ω2
zz2) the resulting

distribution is Gaussian in all directions,
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n(r) = n0 exp

(

−
x2

2σ2
x

)

exp

(

−
y2

2σ2
y

)

exp

(

−
z2

2σ2
z

)

,

(33)

with σi = ω−1
i

√

kBT/m. The temperature is thus re-
lated to the spatial extensions of the trapped atom cloud
by

T =
m

kB
σ2

i ω2
i . (34)

Obviously, it is very important to know the exact trap fre-
quencies to precisely determine the temperature; a prac-
tical example for such a measurement is discussed in con-
text with Fig. 7(c). This way of measuring the temper-
ature is limited by the resolution of the imaging system
and therefore becomes difficult for very tightly confining
potentials.

A widely used and quite accurate, but completely de-
structive way to measure temperatures is the time-of-
flight method. The trap is turned off to release the atoms
into a free, ballistic flight. This has to be done in a rapid,
completely non-adiabatic way as otherwise an adiabatic
cooling effect (see Sec. III A 1) would influence the mea-
surement. After a sufficiently long ballistic expansion
phase, the resulting spatial distribution, which can again
be observed by the various imaging methods, directly
reflects the velocity distribution at the time of release.
Another method is to detect the Doppler broadening of
Raman transitions between ground states, using a pair
of counterpropagating laser beams (Kasevich and Chu,
1991), which is not limited by the natural linewidth of
the optical transition.

Internal distribution. The relative population of the
two hyperfine ground states of an alkali atom (see level
scheme in Fig. 2) can be measured by application of a
probe pulse resonant to the closed sub-transition F =
I + 1/2 → F ′ = 3/2 in the hyperfine structure, which is
well resolved for the heavier alkali atoms (see Table I).
The fluorescence light is then proportional to the num-
ber of atoms in the upper hyperfine state F = I + 1/2.
If, in contrast, a repumping field is present in the probe
light (as it is always used in a MOT), the fluorescence is
proportional to the total number of atoms, as all atoms
are immediately pumped into the closed excitation cy-
cle. The normalized fluorescence signal thus gives the
relative population of the upper hyperfine ground state
(F = I + 1/2); such a measurement is discussed in
Sec. IVA2. A very sensitive alternative, which works
very well in shallow dipole traps, is to blow the total
upper-state population out of the trap by the radiation
pressure of an appropriate resonant light pulse. Subse-
quent recapture into the MOT then shows how many
atoms have remained trapped in the shelved lower hy-
perfine ground state.

The distribution of population over different magnetic
sub-states can be analyzed by Stern-Gerlach methods.
When the atomic ensemble is released from the dipole

trap and ballistically expands in an inhomogeneous mag-
netic field, then atoms in different magnetic sub-levels
can be well separated in space. Such an analysis has
been used for optically trapped Bose-Einstein conden-
sates (Stamper-Kurn et al., 1998a; Stenger, 1998); an
example is shown in Fig. 8(b). Another possibility, which
can be easily applied to shallow dipole traps, is to pull
atoms out of the trap by the state-dependent magnetic
force, as has been used by Zielonkowski et al. (1998b)
for measuring the depolarizing effect of the trap photon
scattering; see discussion in Sec. IVB 3.

C. Collisions

It is a well-known experimental fact in the field of laser
cooling and trapping that collisional processes can lead
to substantial trap loss. Detailed measurements of trap
loss under various conditions provide insight into ultra-
cold collision phenomena, which have been subject of ex-
tensive research (Walker and Feng, 1994; Weiner, 1995).
Here we discuss the particular features of dipole traps
with respect to ultracold collisions.

The decay of the number N of atoms in a trap can be
described by the general loss equation

Ṅ(t) = −αN(t) − β

∫

V

n2(r, t) d3r − γ

∫

V

n3(r, t) d3r .

(35)

Here the single-particle loss coefficient α takes into ac-
count collisions with the background gas in the vacuum
apparatus. As a rule of thumb, the 1/e lifetime τ = 1/α
of a dipole trap is ∼ 1 s at a pressure of 3 × 10−9 mbar.
This is about three times lower than the corresponding
lifetime in a MOT because of the larger cross sections for
collisional loss at lower trap depth.

FIG. 4. Decay of Cs atoms measured in a crossed-beam
dipole trap (see Sec. IVC) realized with the 1064-nm light of
a Nd:YAG laser. The initial peak density is 2.5 × 1012 cm−3.
When all atoms are in the lower hyperfine ground state
(F = 3), the purely exponential decay (1/e-lifetime 1.1 s) is
due to collisions with the background gas. When the atoms
are in the upper hyperfine level (F = 4), a dramatic loss is
observed as a result of hyperfine-changing collisions (loss co-
efficient β ≈ 5× 10−11 cm3/s). Unpublished data, courtesy of
C. Salomon.
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The two-body loss coefficient β describes trap loss due
to ultracold binary collisions and reveals a wide range of
interesting physics. In general, such trap loss becomes
important if the colliding atoms are not in their abso-
lute ground state. In an inelastic process the internal
energy can be released into the atomic motion, causing
escape from the trap. Due to the shallowness of opti-
cal dipole traps, even the collisional release of the rel-
atively small amount of energy in the ground-state hy-
perfine structure of an alkali atom will always lead to
trap loss9. Hyperfine-changing collisions, which occur
with large rate coefficients β of typically 5×10−11 cm3/s
(Sesko et al., 1989; Wallace et al., 1992), are thus of
particular importance for dipole trapping. Alkali atoms
in the upper hyperfine state (F = I + 1/2) can show
very rapid, non-exponential collisional decay, in contrast
to a sample in the lower ground state (F = I − 1/2).
This is impressively demonstrated by the measurement
in Fig. 4, which shows the decay of a sample of Cs atoms
prepared either in the upper or lower hyperfine ground
state. For the implementaion of laser cooling schemes in
dipole traps, it is thus a very important issue to keep the
atoms predominantly in the lower hyperfine state; sev-
eral schemes fulfilling this requirement are discussed in
Secs. IV and V.

Trap loss can also occur as a result of light-assisted bi-
nary collisions involving atoms in the excited state. The
radiative escape mechanism (Gallagher and Pritchard,
1989) and excited-state fine-structure changing collisions
strongly affect a MOT, but their influence is negligibly
small in a dipole trap because of the extremely low op-
tical excitation. It can become important, however, if
near-resonant cooling light is present. Another impor-
tant mechanism for trap loss is photoassociation (Lett et
al., 1995), a process in which colliding atoms are excited
to bound molecular states, which then decay via bound-
bound or bound-free transitions. Dipole traps indeed rep-
resent a powerful tool for photoassociative spectroscopy
(Miller et al., 1993b).

Three-body losses, as described by the coefficient γ in
Eq. 35, become relevant only at extremely high den-
sities (Burt et al., 1997; Stamper-Kurn et al., 1998a),
far exceeding the conditions of a MOT. In a collision
of three atoms, a bound dimer can be formed and the
third atom takes up the released energy, so that all three
atoms are lost from the trap. As a far-detuned dipole
trap allows one to completely suppress binary collision
losses by putting the atoms into the absolute internal
ground state, it represents an interesting tool for mea-
surements on three-body collisions; an example is dis-
cussed in Sec. IVA4.

9In contrast, a MOT operated under optimum capture con-
ditions is deep enough to hold atoms after hyperfine-changing
collisions.

In contrast to inelastic collisions releasing energy, elas-
tic collisions lead to a thermalization of the trapped
atomic ensemble. This also produces a few atoms with
energies substantially exceeding kBT . A loss of these
energetic atoms in a shallow trap leads to evaporative
cooling (see Sec. III A 1) and is thus of great interest for
the attainment of Bose-Einstein condensation. Regard-
ing the basic physics of elastic collisions, dipole traps
are not different from magnetic traps, but they offer ad-
ditional experimental possibilities. By application of a
homogeneous magnetic field atomic scattering properties
can be tuned without affecting the trapping itself. Using
this advantage of dipole trapping, Feshbach resonances
have been observed with Bose-condensed Na atoms (In-
ouye et al., 1998) and thermal Rb atoms (Courteille et
al., 1998). Moreover, an intriguing possibility is to study
collisions in an arbitrary mixture of atoms in different
magnetic sub-states (Stenger et al., 1998).

IV. RED-DETUNED DIPOLE TRAPS

The dipole force points towards increasing intensity if
the light field is tuned below the atomic transition fre-
quency (red detuning). Therefore, already the focus of a
laser beam constitutes a stable dipole trap for atoms as
first proposed by Ashkin (1978). The trapping forces gen-
erated by intense focused lasers are rather feeble which
was thhe main obstacle for trapping neutral atoms in
dipole traps. Attainable trap depths in a tightly fo-
cused beam are typically in the millikelvin range, orders
of magnitude smaller than the thermal energy of room-
temperature atoms. One therefore had to first develop
efficient laser cooling methods for the preparation of cold
atom sources (see Sec. III A 1) to transfer significant num-
bers of atoms into a dipole trap.

In their decisive experiment, S. Chu and coworkers
(1986) succeeded in holding about 500 sodium atoms for
several seconds in the tight focus of a red-detuned laser
beam. Doppler molasses cooling was used to load atoms
into the trap, which was operated at high intensities and
considerable atomic excitation in order to provide a suf-
ficiently deep trapping potential. Under these circum-
stances, the radiation pressure force still significantly in-
fluences the trapping potential due to a considerable rate
of spontaneous emission. With the development of sub-
Doppler cooling (see Sec. III A 1) and the invention of the
magneto-optical trap as a source for dense, cold atomic
samples (see Sec. III B 1), dipole trapping of atoms re-
gained attention with the demonstration of a far-off res-
onant trap by Miller et al. (1993). In such a trap, sponta-
neous emission of photons is negligible, and the trapping
potential is given by from the equations derived in Sec.
II.

Since then, three major trap types with red-detuned
laser beams have been established, all based on combi-
nations of focused Gaussian beams: Focused-beam traps
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consisting of a single beam, the standing-wave traps
where atoms are axially confined in the antinodes of a
standing wave, and crossed-beam traps created by of two
or more beams intersecting at their foci. The different
trap types are schmetically depicted in Fig. 5. We dis-
cuss these trap configurations and review applications
of the different trap types for the investigation of inter-
esting physical questions. Sec. IVA deals with focused-
beam traps, Sec. IVB presents standing-wave traps, and
Sec. IVC discusses crossed-beam traps. Far-detuned op-
tical lattices trapping atoms in micropotentials formed
by multiple-beam interference represent a trap class of
their own. Atoms might get trapped in the antinodes of
the interference pattern at red detuning from resonance,
but also in the nodes when the light field is blue-detuned.
Sec. IVD at the end of this chapter is devoted to recent
developments on far-detuned optical lattices.

FIG. 5. Beam configurations used for red-detuned far-off
resonance traps. Shown below are the corresponding calculated
intensity distributions. (a) Horizontal focused-beam trap. (b)
Vertical standing-wave trap. (c) Crossed-beam trap. The
waist w0 and the Rayleigh length zR are indicated.

A. Focused-beam traps

A focused Gaussian laser beam tuned far below the
atomic resonance frequency represents the simplest way
to create a dipole trap providing three-dimensional con-
finement [see Fig. 5(a)]. The spatial intensity distribution
of a focused Gaussian beam (FB) with power P propa-
gating along the z-axis is described by

IFB(r, z) =
2P

πw2(z)
exp

(

−2
r2

w2(z)

)

(36)

where r denotes the radial coordinate. The 1/e2 radius
w(z) depends on the axial coordinate z via

w(z) = w0

√

1 +

(

z

zR

)2

(37)

where the minimum radius w0 is called the beam waist
and zR = πw2

0/λ denotes the Rayleigh length. From the
intensity distribution one can derive the optical potential
U(r, z) ∝ IFB(r, z) using Eq. 10, 12, or 19. The trap

depth Û is given by Û = |U(r = 0, z = 0)|.
The Rayleigh length zR is larger than the beam waist

by a factor of πw0/λ. Therefore the potential in the ra-
dial direction is much steeper than in the axial direction.
To provide stable trapping one has to ensure that the
gravitational force does not exceed the confining dipole
force. Focused-beam traps are therefore mostly aligned
along the horizontal axis. In this case, the strong radial
force ∼ Û/w0 minimizes the perturbing effects of gravity
10.

If the thermal energy kBT of an atomic ensemble is
much smaller than the potential depth Û , the extension
of the atomic sample is radially small compared to the
beam waist and axially small compared to the Rayleigh
range. In this case, the optical potential can be well ap-
proximated by a simple cylindrically symmetric harmonic
oscillator

UFB(r, z) ≃ −Û

[

1 − 2

(

r

w0

)2

−

(

z

zR

)2
]

. (38)

The oscillation frequencies of a trapped atom are given
by ωr = (4Û/mw2

0)
1/2 in the radial direction, and ωz =

(2Û/mz2
R)1/2 in the axial direction. According to Eq. 25,

the harmonic potential represents an important special
case of a power law potential for which thermal equilib-
rium properties are discussed in Sec. III.

1. Collisional studies

In their pioneering work on far-off resonance traps
(FORT), Miller et al. (1993a) from the group at Univer-
sity of Texas in Austin have observed trapping of 85Rb
atoms in the focus of a single, linearly polarized Gaus-
sian beam with detunings from the D1 resonance of up to
65 nm. The laser beam was focused to a waist of 10 µm
creating trap depths in the mK-range for detunings. Be-
tween 103 and 104 atoms were accumulated in the trap
from 106 atoms provided by a vapor-cell MOT. Small
transfer efficiencies are a general property of traps with
tightly focused beams resulting from the small spatial
overlap between the cloud of atoms in the MOT. Typi-
cal temperatures in the trap are below 1 mK resulting in

10A new type of trap for the compensation of gravity was
presented by Lemonde et al. (1995). It combines a focused-
beam dipole trap providing radial confinement with an inho-
mogeneous static electric field along the vertical z-axis induc-
ing tight axial confinement through the dc Stark effekt.
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densities close to 1012 atoms/cm3. Peak photon scatter-
ing rates were a few hundreds per second leading to neg-
ligible loss rates by photon heating as compared to losses
by background gas collisions. High densities achieved in
a tightly-focused beam in combination with long storage
times offer ideal conditions for the investigation of colli-
sions between trapped atoms.

The trap lifetime without cooling illustrated in Fig.
6(a) showed an increase of the lifetime by about an order
of magnitude for increasing detunings at rather small de-
tunings. At larger detunings, the lifetime was found to be
determined by the Rb background pressure of the vapor-
cell to a value of about 200ms. The shorter lifetimes
at smaller detunings were explained in a later publica-
tion (Miller et al., 1993b) by losses through photoasso-
ciation of excited Rb2 dimers which was induced by the
trapping light. This important discovery has inspired a
whole series of experiments on ultracold collisions inves-
tigated by the Austin group with photoassociation spec-
troscopy in a dipole trap. Instead of using the trapping
light, photoassociation was induced by additional lasers
in later experiments. The investigations comprise colli-
sional properties and long-range interaction potentials of
ground state atoms, shape resonances in cold collisions,
and the observation of Feshbach resonances (Cline et al.,
1994b; Gardner et al., 1995; Boesten et al., 1996; Tsai et
al., 1997, Courteille et al., 1998).

(b)

(a)

FIG. 6. Measurement of trap lifetimes and hyperfine relax-
ation times for Rb atoms in a far-detuned focused-beam trap.
(a) Trap decay time as a function of the trapping beam wave-
length. From Miller et al. (1993a). (b) Time constant τrel

for hyperfine population relaxation versus trapping beam wave-
length, in comparison to the mean time τs between two spon-
taneous scattering events. From Cline et al. (1994 c©Optical
Society of America).

2. Spin relaxation

If the detuning of the trapping light field is larger than
finestructure splitting of the excited state, photon scat-
tering occurs almost exclusively into the elastic Rayleigh
component. Inelastic Raman scattering changing the hy-
perfine ground state is reduced by a factor ∼ 1/∆2 as
compared to Rayleigh scattering. This effect was demon-
strated in the Austin group by preparing all trapped 85Rb
atoms in the lower hyperfine ground state and study-
ing the temporal evolution of the higher hyperfine state
(Cline et al., 1994a). The relaxation time constant as a
function of detuning is plotted in Fig. 6(b) in compari-
son to the calculated average time between two photon
scattering events τs = Γsc . For large detunings, the re-
laxation time constant τrel is found to exceed τs by two
orders of magnitude. This shows the great potential of
far-detuned optical dipole traps for manipulation of in-
ternal atomic degrees of freedom over long time intervals.
Using the spin state dependence of the dipole potential in
a circularly polarized light beam (see Sec. II B 2), Corwin
et al. (1997) from University of Colorado at Boulder have
investigated far-off resonance dipole traps that selectively
hold only one spin state. The small spin relaxation rates
in dipole traps may find useful applications for the search
for beta-decay asymmtries and atomic parity violation.

3. Polarization-gradient cooling

Polarization-gradient cooling in a focused-beam trap
has been investigated by a group at the ENS in Paris
(Boiron et al., 1998). The trapped atoms were sub-
jected to blue-detuned molasses cooling in a near-
resonant standing wave (see Sec. III A 1). Previously, the
same group had performed experiments on polarization-
gradient cooling of free atomic samples which were
isotropically distributed. A density-dependent heat-
ing mechanism was found limiting the achievable final
temperatures for a given density (Boiron et al., 1996).
This heating was attributed to reabsorption of the scat-
tered cooling light within the dense cloud of cold atoms.
Of particular interest was the question, whether the
anisotropic geometry of a focused beam influences heat-
ing processes through multiple photon scattering.

Cesium atoms were trapped in the focus (w0 = 45 µm)
of a 700mW horizontally propagating Nd:YAG laser
beam at 1064nm. The trap had a depth of 50 µK, and the
radial trapping force exceeded gravity by roughly one or-
der of magnitude. From a MOT containing 3×107 atoms,
2×105 atoms were loaded into the trap 11. Polarization-
gradient cooling was applied for some tens of milliseconds

11The Nd:YAG beam was continuously on also during the
MOT loading.
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yielding temperatures between 1 and 3µK, depending on
the cooling parameters. To avoid trap losses by inelas-
tic binary collisions involving the upper hyperfine ground
state (see Sec. III C), the cooling scheme was chosen in
such a way that the population of the upper hyperfine
ground state was kept at a low level.
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FIG. 7. Properties of a horizontal focused-beam trap for Cs
atoms. (a) Absorption image of the atom distribution. The
transverse rms radius in the focal plane is 6µm. (b) Mea-
surement of the vertical oscillation period (see text). Adapted
from Boiron et al. (1998).

An absorption image of the trapped cesium atoms at
T = 2 µK is depicted in Fig. 7(a) showing the rod-shaped
cloud of atoms. The distribution of atoms had a radial
extension σr = 6 µm and a axial size of σz = 300 µm cor-
responding to a peak density of ∼ 1 × 1012 atoms/cm3.
The picture was taken 30ms after the cooling had been
turned off. The time interval is large compared to the ra-
dial oscillation period (ωr/2π = 330Hz), but short com-
pared to the axial oscillation period (ωz/2π = 1.8Hz). In
this transient regime, the axial distribution had not yet
reached its thermal equilibrium extension of σz = 950 µm
which leads to a decrease of the density. For the radial
extension, the measured value coincided with the expec-
tation for thermal equilibrium as determined by the mea-
sured temperature and oscillation frequency (see Eq. 34).

To measure the transverse oscillation frequency, the
Nd:YAG beam was interrupted for a ∼ 1 ms time interval,
during which the cold atoms were accelerated by gravity
to a mean velocity about 1 cm/s. After the trapping laser
had been turned on again, the atoms vertically oscillate in
the trap. The oscillation in vertial velocity was detected
by measuring the mean arrival time of the atoms at a
probe laser beam 12 cm below the trap [ordinate in Fig.
7(b)] as a function of the trapping time intervals [abscissa
in Fig. 7(b)]. The measured vertical oscillation frequency
ωr = 330 Hz is consistent with the value ωr = 390 Hz
derived from the trap depth and the beam waist.

The temperatures measured in the dipole trap were
about 30 times lower than one would expect on the basis
of the heating rates found for a isotropic free-space sam-
ple at the corresponding densities (Boiron et al., 1995).
No evidence was found for heating of the trapped sample.
The reduction of density-dependent heating is a bene-
fit from the strongly anisotropic trapping geometry of a
focused-beam trap. Due to the much smaller volume to

surface ratio of an atomic cloud in the focused-beam trap
as compared to a spherical distribution, photons emitted
during cooling have a higher chance to escape without re-
absorption from the trap sample which causes less heat-
ing through reabsorption.

4. Bose-Einstein condensates

Optical confinement of Bose-Einstein condensates was
demonstrated for the first time by a group at MIT in
Cambridge, USA (Stamper-Kurn et al., 1998a). Bose
condensates represent the ultimately cold state of an
atomic sample and are therefore captured by extremely
shallow optical dipole traps. High transfer efficiencies
can be reached in very far-detuned traps, and the pho-
ton scattering rate acquires negligibly small values (see
Eq. 14). Various specific features of dipole traps can
fruitfully be applied to the investigation of many aspects
of Bose-Einstein condensation which were not accessible
formerly in magnetic traps.

Sodium atoms were first evaporatively cooled in a
magnetic trap to create Bose condensates containing
5 − 10 × 106 atoms in the 3S1/2(F = 1, mF = 1) state
(Mewes et al., 1996). Subsequently, the atoms were
adiabatically transferred into the dipole trap by slowly
ramping up the trapping laser power, and then suddenly
switching off the magnetic trap. The optical trap was
formed by a laser beam at 985 nm (396 nm detuning
from resonance) focused to a waist of about 6 µm. A
laser power of 4mW created a trap depth of about 4 µK
which was sufficient to transfer 85% of the Bose con-
densed atoms into the dipole trap and to provide tight
confinement. Peak densities up to 3 × 1015 atoms/cm3

were reported representing unprecendented high values
for optically trapped atomic samples.

Condensates were observed in the dipole trap even
without initially having a condensate in the magnetic
trap. This strange effect could be explained by an adi-
abatic increase of the local phase-space density through
changes in the potential shape (Pinkse et al., 1997). The
slow increase of the trapping laser intensity during load-
ing leads to a deformation of the trapping potential cre-
ated by the combination of magnetic and laser fields. The
trapping volume of the magnetic trap was much larger
than the volume of the dipole trap. Therefore, phase-
space density was increased during deformation, while
entropy remained constant through collisional equilibra-
tion. Using the adiabatic deformation of the trapping
potential, a 50-fold increase of the phase-space density
was observed in a later experiment (Stamper-Kurn et al,
1998b).

The lifetime of atoms in the dipole trap is shown in Fig.
8(a) in comparison to the results obtained in a magnetic
trap. In the case of tight confinement and high densities
(triangles in Fig. 8), atoms quickly escape through inelas-
tic intra-trap collisions. Long lifetimes (circles in Fig. 8)
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were achieved in the dipole trap and the magnetic trap,
respectively, when the trap depth was low enough for col-
lisionally heated atoms to escape the trap. Trap loss was
found to be dominated by three-body decay with no iden-
tifiable contributions from two-body dipolar relaxation.
The lifetime measurements delivered the three-body loss
rate constant γ = 1.1(3) × 10−31 cm6/s (see Eq. 35) for
collisions among condensed sodium atoms.

Fig. 8(b) demonstrates simultaneous confinement of a
Bose condensate in different Zeeman substates mF =
0,±1 of the F = 1 ground state. To populate the
substates, the atoms were exposed to an rf field sweep
(Mewes et al., 1997). The distribution over the Zeeman
states was analyzed through Stern-Gerlach separation by
pulsing on a magnetic field gradient of a few G/cm after
turning off the dipole trap. It was verified that all F = 1
substates were stored stably for several seconds.
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FIG. 8. Bose-Einstein condensates of Na atoms in fo-
cused-beam traps. (a) Trapping lifetime in optical traps and
magnetic traps. The number of condensed atoms versus trap-
ping time is shown. Closed symbols represent the data for
optical traps with best transfer efficiency (triangles) and slow-
est decay (circles). Open circles represent data for a magnetic
trap with optimized lifetime. The lines are fits based on sin-
gle-particle losses and three-body decay. (b) Optical trapping
of condensates in all hyperfine spin states of the F = 1 ground
state. An absorption image after 340ms of optical confine-
ment and subsequent release from the trap is shown. Hyper-
fine states were separated by a pulsed magnetic field gradient
during time of flight. The field view of the image is 1.6 by
1.8mm. Adapted from Stamper-Kurn et al. (1998a).

After the first demonstration of optical trapping, a
spectacular series of experiments with Bose-Einstein con-
densates in a dipole trap was performed by the MIT
group. By adiabatically changing the phase-space den-
sity in the combined magnetic and optical dipole trap
(see above), Stamper-Kurn et al. (1998b) were able to
reversibly cross the transition to BEC. Using this tech-
nique, the temporal formation of Bose-Einstein conden-
sates could extensively be studied (Miesner et al, 1998a).
The possibility of freely manipulating the spin of trapped
atoms without affecting the trapping potential has led to
the observation of Feshbach resonances in ultracold elas-
tic collisions (Inouye et al., 1998) and the investigation of
spin domains and metastable states in spinor condensates

(Stenger et al., 1998, Miesner et al., 1998b).

5. Quasi-electrostatic traps

The very interesting case of quasi-electrostatic dipole
trapping has so far not been considered in this review.
When the frequency of the trapping light is much smaller
than the resonance frequency of the first excited state
ω ≪ ω0, the light field can be regarded as a quasi-static
electric field polarizing the atom. Quasi-electrostatic
traps (QUEST) were first proposed (Takekoshi et al.,
1995) and realized (Takekoshi and Knize, 1996) by a
group at University of Southern California in Los An-
geles. In the quasi-electrostatic approximation ω ≪ ω0,
one can write the dipole potential as

Udip(r) = −αstat
I(r)

2ε0c
(39)

with αstat denoting the static polarizability (ω = 0). The
light-shift potential of the excited states is also attractive
contrary to far-off resonant interaction discussed before.
Atoms can therefore be trapped in all internal states by
the same light field. Since the trap depth in Eq. 39 does
not depend on the detuning from a specific resonance line
as in the case of a FORT, different atomic species or even
molecules may be trapped in the same trapping volume.

For the ground state of alkali atoms, Eq. 39 is well ap-
proximated by applying the quasi-static approximation
to Eq. 10 which gives

Udip(r) = −
3πc2

ω3
0

Γ

ω0
I(r) . (40)

Compared to a FORT at a detuning ∆, the potential
depth for ground state atoms in a QUEST is smaller by
a factor 2∆/ω0. Therefore, high power lasers in the far-
infrared spectral range have to be employed to create suf-
ficiently deep traps. The CO2 laser at 10.6µm which is
commercially available with cw powers up to some kilo-
watts is particulary well suited for the realization of a
QUEST (Takekoshi et al., 1995).

An important feature of the QUEST is the practical
absence of photon scattering. The relation between the
photon scattering rate and the trap potential can be de-
rived from Eqs. 10 and 11 in the quasi-electrostatic ap-
proximation:

h̄Γsc(r) = 2

(

ω

ω0

)3
Γ

ω0
Udip(r). (41)

When compared to the corresponding relation for a
FORT given by Eq. 14, the dramatic decrease of the
photon scattering rate in a QUEST becomes obvious.
Typical scattering rates are below 10−3s−1 showing that
the QUEST represents an ideal realization of a purely
conservative trap.
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Takekoshi and Knize (1996) have realized trapping of
cesium atoms in a QUEST by focussing a 20W CO2 laser
to a waist of 100 µm resulting in a trap depth of 115 µK.
Around 106 atoms prepared in the F = 3 state were
loaded into the trap from a standard MOT. The atom
loss rates of ∼ 1 s−1 were consistent with pure losses
through background gas collisions. Hyperfine relaxation
times were found to exceed 10 s.

B. Standing-wave traps

A standing wave (SW) trap provides extremely tight
confinement in axial dimension as can be seen from Fig.
5(b). The trap can be realized by simply retroreflect-
ing the beam while conserving the curvature of the wave
fronts and the polarization. Assuming small extensions
of the atomic cloud, one can write the potential in the
form

USW (r) ≃ −Û cos2 (kz)

[

1 − 2

(

r

w0

)2

−

(

z

zR

)2
]

(42)

with the standing wave oriented along the z-axis. The
potential depth is four times as large than the corre-
sponding trap depth for a single focused beam discussed
in Sec. IVA. As for a single focused beam, radial con-
finement is provided by a restoring force ∼ Û/w0. The
axial trapping potential is spatially modulated with a pe-
riod of λ/2. Atoms are strongly confined in the antinodes

of the standing wave (restoring force ∼ Ûk) resulting in
a regular one-dimensional lattice of pancake-like atomic
subensembles. When aligned vertically, the axial confine-
ment greatly exceeds the gravitational force mg. One can
therefore use rather shallow trap, just sufficiently deep to
trap a pre-cooled ensemble, which results in small photon
scattering rates (see Eq. 14) and large loading efficiencies.

The tight confinement along the axial direction leads
to large oscillation frequencies ωz = h̄k(2Û/m)1/2 at the
centre of the trap. The oscillation frequency decreases
when moving along the z-axis due to the decreasing light
intensity. At low temperatures, the energy of the ax-
ial zero-point motion 1

2 h̄ωz in the centre of the trap can
become of the same order of magnitude as the thermal
energy 1

2kBT even for moderate trap depths 12. In this
regime, the axial atomic motion can no longer be de-
scribed classically but has to be quantized, and the vi-
brational ground state of the axial motion is substan-
tially populated. The axial spread of the wavepacket is
much smaller than the wavelength of an optical tran-
sition (Lamb-Dicke regime) giving rise to spectral line-
narrowing phenomena. One might even enter a regime

12Using the recoil temperature Trec for the cooling transition
at the wavelength λ0 introduced in Sec. III A 1, one can write
the zero-point energy as (λ0/λ)(kBTrecÛ/2)1/2.

where the wavepacket extension comes close to the s-wave
scattering length leading to dramatic changes in the col-
lisional properties of the trapped gas.

1. Optical cooling to high phase-space densities

Well-resolved vibrational levels and Lamb-Dicke nar-
rowing, as realized along the axis of a standing-wave
dipole trap, are necessary requirements for the appli-
cation of optical sideband cooling as explained in Sec.
III A 1. By employing degenerate-sideband Raman cool-
ing, high phase-space densities of an ensemble contain-
ing large particle numbers have been achieved by Vuletic
et al. (1998) from a group in Stanford. In a vertical
far-detuned standing wave, peak phase- space densities
around 1/180 have been obtained with 107 cesium atoms,
corresponding to a mean temperature of 2.8 µK and a
peak spatial density of 1.4 × 1013 atoms/cm3.

The trap was generated by a Nd:YAG laser with 17W
single-mode power at λ = 1064nm. The large beam
waist of 260 µm created a trap depth of 160 µK which
resulted in high loading efficiencies (≈ 30% from a blue-
detuned molasses released from a MOT) and small pho-
ton scattering rates (≈ 2 s−1). Atoms oscillated at
ωr/2π = 120Hz in the radial (horizontal) direction, and
at ωz/2π = 130kHz in the axial (vertical) direction. A
dramatic dependence of the trap lifetime on the hyperfine
state of the cesium atoms was observed similar to Fig. 4
in Sec. III C. Around 1×107 atoms were contained in the
trap populating 4700 vertical potential wells. Degener-
ate Raman sideband cooling was applied between vibra-
tional states of a pair of Zeeman shifted magnetic sub-
levels in the lowest hyperfine ground state as explained
in Sec. III A 1. Suppressed collisional losses through in-
elastic binary collisions at high densities are greatly sup-
pressed since population in the upper hyperfine state is
kept extremely low in this cooling scheme. The Raman
coupling was provided by the lattice field itself (Deutsch
and Jessen, 1998).

FIG. 9. Resolved-sideband cooling of Cs atoms in a verti-
cal standing-wave trap. Evolution of vertical (solid squares)
and horizontal (open squares) temperatures. Cooling is ap-
plied only along the tightly confining vertical axis, the horizon-
tal degrees of freedom are indirectly cooled through collisional
thermalization. From Vuletic et al. (1998).
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Axial and radial temperatures evolved differently dur-
ing cooling as indicated in Fig. 9. The axial direction was
directly cooled causing the axial temperature to quickly
drop to Tz = 2.5 µK. The radial temperature followed by
collisional thermalization with a time constant of 150ms.
After sideband cooling was turned off, the temperature
increased at a rate of 4 µK/s limiting the achievable fi-
nal temperatures. This heating rate was much larger
than the rate estimated on the basis of photon scatter-
ing which might indicate additional heating sources such
as laser noise. The achieved high thermalization rates in
combination with large particle numbers would provide
excellent starting conditions for subsequent evaporative
cooling.

A different approach to optical cooling of large parti-
cle numbers to high phase-space densities was followed
by a group at Berkeley (Winoto et al., 1998), who have
recently applied polarization-gradient cooling to cesium
atoms in a vertical standing-wave trap. The standing
wave was linearly polarized resulting in equal light shifts
for all magnetic sublevels of the atomic ground state
(see Sec. II B 2). Therefore, polarization-gradient cool-
ing, which relies on optical pumping between the ground-
state sublevels (see Sec. III A 1), could be applied to the
trapped sample in a very efficient way. A phase-space
density around 10−4 with the large number of 108 atoms
was reached.

2. Quantum interference

The regular arrangement of atoms in a standing wave-
dipole trap has amazing consequences when a Bose con-
densate is loaded into such a trap. Macroscopic interfer-
ence of Bose condensed 87Rb atoms tunneling from an
extremely shallow 1D lattice under the influence of grav-
ity has recently been observed by Anderson and Kasevich
(1998) at Yale University. The dipole potential was cre-
ated by a vertical standing wave at 850nm (detuning of
65 nm from the D1 line) with a waist of 80 µm, an or-
der of magnitude larger than the transverse radius of the
condensate. The condensate of 104 atoms was coherently
distributed among ≈ 30 very shallow potential wells. The
wells supported only one bound energy band below the
potential edge which is equivalent to Û ≃ kBTrec where
Trec is the recoil temperature (see Eq. 22) at the wave-
length of the trapping field.

The gravitational field induces an offset between ad-
jacent wells. For weak potential gradients, the external
field can be treated as a perturbation th the band struc-
ture associated with the lattice. In this limit, wavepack-
ets remain confined in a single band. The external field
drives coherent oscillations at the Bloch frequency as has
been demonstrated with ultracold atoms confined in an
accelerated far-detuned 1D standing wave by Ben Dahan
et al. (1996) at ENS in Paris and by Wilkinson et al.
(1996) at University of Texas in Austin.

The shallow potential wells allow for tunneling of par-
ticles into unbound continuum states. In the Yale ex-
periment, the lifetime of the atoms confined in the lat-
tice was purely determined by the tunneling losses. For
a lattice of depth Û = 1.1kBTrec, the observed lifetime
was ∼ 50ms. Each lattice site can be seen as a point
emitter of a deBroglie wave. Interference between the
different emitter ouputs lead to the formation of atom
pulses falling out of the standing wave, quite similar to
the output of a mode-locked pulsed laser. The pulse rep-
etition frequency ωrep = mgλ/2h̄ was determined by the
gravitational increment between two adjacent walls. The
repetition frequency can be interpreted as the difference
in chemical potential divided by h̄. This indicates the
close relation of the observed effect of coherent atomic
deBroglie waves to the ac Josephson effect resulting from
quantum interference of two superconducting reservoirs.

3. Spin manipulation

Zielonkowski et al. (1998b) from the MPI für Kern-
physik in Heidelberg have used a vertical standing wave
trap for the manipulation of spin-polarized atoms. By
using a large-volume, shallow red-detuned standing wave
trap, depolarizing effects of photon scattering and atomic
interactions could be kept at a low level while allowing
for large numbers of stored atoms.

Cesium atoms were trapped in a retroreflected 220-
mW beam at a wavelength of λ = 859nm (detuning of
6.1 nm above the D2 line). The waist of the beam in the
interaction region was 0.50mm. The maximum poten-
tial depth amounted to only 17 µK which was sufficiently
deep to directly load atoms from a MOT at sub-Doppler
temperatures. Despite the shallow potential depth, the
confining force exceeded the gravitational force by about
three orders of magnitude. The transfer efficiency from
the MOT into the shallow trap was about 14% resulting
in ∼ 105 trapped atoms at a liftime of τ = 1.9 s as shown
by the stars in Fig. 10(a).

In a first experiment, the spin state mF = 0 was se-
lected by a Stern-Gerlach (SG) force. The force was
created by horizontally shifting the zero of the MOT
quadrupole field with respect to the position of the dipole
trap (see Fig. 10(b)). In this way, only atoms with
mF = 0 are trapped by the dipole trap, all other mag-
netic substates are pulled out of the trap by the magnetic
dipole force. The depolarizing effect of the trap light was
determined by measuring the lifetime τSG of the mF = 0
atoms (see circles in Fig. 10(a)) and comparing this value
with the trap lifetime without Stern-Gerlach selection.
The depolarization rate Γdepol = 1/τSG − 1/τ = 0.9 s−1

allowed a determination of the photon scattering rate
from calculated values of the mF -state branching ratios
for spontaneous scattering. The resulting scattering rate
agrees well with the expectation based on Eq. 21.
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FIG. 10. Spin manipulation of Cs in a vertical stand-
ing-wave trap. (a) Storage time with all ground-state sublevels
populated (stars), and for the Stern-Gerlach selected mF = 0
state (circles). Shown is the trapped particle number N rela-
tive to the number of atoms trapped in the MOT before trans-
fer N0. The line represents an exponential fit to the data
yielding a time constant of 1.9 s for the unpolarized sample
and 0.7 s for the mF = 0 polarized atoms. (b) Trap poten-
tials for the combined magnetic quadrupole and optical trap
used for Stern-Gerlach selection of the mF = 0 state from
the F = 4 hyperfine ground state. The zero-point of the mag-
netic quadrupole has been horizontally shifted with respect to
the centre of the standing-wave trap. Atoms with mF 6= 0 are
expelled from the dipole trap by the magnetic field gradient.
Adapted from Zielonkowski et al. (1998b).

In a second experiment, spin precession in a ficitious
magnetic field (Cohen-Tannoudji and Dupont-Roc, 1972,
Zielonkowski et al., 1998a) was demonstrated. The field
was induced by an additional off-resonant circularly po-
larized laser beam which induced a light shift scaling lin-
ear with mF as discussed in Sec. II B 2. The result-
ing splitting corresponds to a fictitious magnetic field of
50mG. The mF = 0 state was selected by a short Stern-
Gerlach pulse resulting in a macroscopic magnetization
of the sample. The population of the same state was
analyzed after a 150ms delay. Between preparation and
analysis, the atoms interacted with a pulse of the ficti-
tious field laser in combination with a holding magnetic
field. The mF = 0 population oscillates with the dura-
tion of the laser pulses which can be directly interpreted
as the Larmor precession of the spin in the superposition
of fictitous and holding magnetic field. A 2π and a 4π
rotation of the magnetization were observed.

4. Quasi-electrostatic lattices

A standing wave created by the light at 10.6 µm from
a CO2 laser creates a QUEST (see Sec. IVA5) with a
spacing between the axial potential wells which is large
compared to the transition wavelength of the trapped
atoms. In a group at the MPI für Quantenoptik in
Garching, such a lattice of mesoscopic potential wells
was recently realized with rubidium atoms (Friebel et al.,
1998a; 1998b). A 5 W CO2 laser beam was focused to a
waist of 50µm creating a trap depth of about 360 µK.
Up to 3 × 105 atoms could be loaded into the horizon-
tal standing wave trap which had a lifetime of 1.8 s lim-
ited by background gas collisions. Temperatures around

10µK were achieved by polarization gradient cooling in
the trap.

The vibrational frequencies of atoms inside the poten-
tial wells were measured by modulating the laser intensity
in order to drive parametric excitation of the atomic oscil-
lations. When the modulation frequency equals twice the
vibrational frequency 2ωosc (or subharmonics 2ωosc/n),
atoms are heated out of the trap leading to a reduced life-
time. This effect was demonstrated by varying the mod-
ulation frequency and measuring the number of atoms
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FIG. 11. Excitation spectra of Rb atoms trapped with a CO2

laser at 10.6µm creating quasi-electrostatic traps. The spec-
trum of a standing-wave trap (left graph) is compared to the
spectrum from a single-beam trap (right graph). The horizon-
tal axis is the fluorescence of atoms which are illuminated af-
ter 0.6 s trapping time. The vertical axis gives the modulation
frequency of the trap light intensity. Parametric resonances at
the oscillation frequencies and twice their value are observed.
The jump at 100 Hz in both graphs is an artefact resulting
from a change of the modulation depth and modulation time.
Adapted from Friebel et al. (1998a).

that were left in the trap after a fixed trapping time of
600ms. The remaining atoms were detected by switch-
ing on a resonant light field and recording the fluores-
cence. The left graph in Fig. 11 shows the excitation
spectrum for the standing-wave trap. Parametric res-
onances at 2 kHz and at 32 kHz can be identified which
are attributed to excitations of the radial and axial vibra-
tions, respectively. A subharmonic resonance at 16 kHz
is also observed. In the left graph of Fig. 11, the ex-
citation spectrum of a single focused-beam dipole trap
is presented. The trap was realized by interrupting the
retroreflected laser beam which had formed the standing
wave. The radial resonance shifts to 1.6 kHz (subhar-
monic at 0.8 kHz) because of the four times lower trap
depth. The reduction of the axial vibrational frequency
is more dramatic since it scales as 1/(2kzR) relative to
the standing-wave trap (including the factor 4 in trap
depth). The axial resonance is now found at 80Hz (sub-
harmonic at 40Hz).
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C. Crossed-beam traps

A single focused beam creates a highly anisotropic trap
with relatively weak confinement along the propagation
axis and tight confinement in the perpendicular direc-
tion [see Figs. 5(a) and 7(a)]. In a standing-wave trap,
the anisotropic atomic distribution of the single beam
trap is split into anisotropic subensembles with extremely
tight confinement along the axial direction. Crossing two
beams with orthogonal polarization and equal waist un-
der an angle of about 90◦ as indicated in Fig. 5(c) rep-
resents an obvious way to create nearly isotropic atomic
ensembles with tight confinement in all dimensions. In
this case, the dipole potential for small extensions of the
atomic cloud can be approximated as

UCB(x, y, z) ≃ −Û

(

1 −
x2 + y2 + 2z2

w2
0

)

. (43)

It should be noted that the effective potential depth is
only Û/2 as atoms with larger energy leave the steep trap
along one of the beams.

1. Evaporative cooling

Crossed-beam dipole traps provide a good compromise
between decent trapping volumes and tight confinement,
and are therefore suited for the application of evaporative
cooling as explained in Sec. III A 1. Adams et al. (1995)
at Stanford used a crossed-beam configuration oriented
in the horizontal plane for evaporative cooling of sodium.
A single-mode Nd:YAG laser generated two beams of 4W
each, focused to a waist of 15 µm and crossing under 90◦.
The trap depth was close to 1mK. The polarizations of
the two beams were chosen orthogonal which results in a
spin-independent trapping potential for the ground states
because of the large detuning of the 1064nm light from
the two fine-structure lines of sodium (see Table I).

After transfer from a MOT, evaporative cooling was
started with ∼ 5000 atoms at a temperature of 140 µK
and a peak density of 4 × 1012 atoms/cm3 as indicated
by the dotted lines in Fig. 12. To force evaporation of
high-energetic particles, the Nd:YAG power was expo-
nentially ramped down from 8W (trap depth ∼ 900 µK)
to 0.4W (trap depth ∼ 45 µK) within 2 s . After evapo-
ration, ∼ 500 atoms were left in the trap. Temperature
was reduced by a factor of 35 to 4 µK. Yet, density de-
creased by about an order of magnitude since the restor-
ing force in the trap is reduced when ramping down the
intensity. To keep the density at a high value for effi-
cient evaporation, one would have to further compress
the cloud. However, compared to the initial conditions,
phase-space density was increased by a factor of 28 in the
experiment indicating the potential of evaporative cool-
ing for the enhancement of phase-space density in dipole
traps.

FIG. 12. Evaporative cooling of Na atoms in a
crossed-dipole trap. (a) Atom density distribution before (dot-
ted line) and after (solid line) evaporative cooling of Na in a
crossed dipole trap. The density decreased by a factor of about
7. (b) Time-of-flight measurement of the temperature before
(dotted line) and after (solid line) evaporative cooling. The
temperature decreased from 140 µK to 4µK. From Adams et
al. (1995).

2. Interference effects

Let us now consider the more general case of two beams
of equal waist w0 propagating in the xy-plane and inter-
secting at the focal points under an arbitrary angle. The
angle between the beams and the x-axis is ±φ. This con-
figuration includes as special cases the single focussed-
beam trap (φ = 0), discussed in Sec. IVA, and the
standing wave trap (φ = 90◦), discussed Sec. IVB. In
the harmonic approximation, the trapping potential can
be written as

UCB(x, y, z) ≃ −Û(y)

(

1 − 2
x2

w2
x

− 2
y2

w2
y

− 2
z2

w2
0

)

(44)

The potential radii

wx,y are given by w2
x =

(

cos2 φ/w2
0 + sin2 φ/2z2

R

)−1
and

w2
y =

(

sin2 φ/w2
0 + cos2 φ/2z2

R

)−1
. The y-dependence of

the trap depth Û reflects interference effects between the
two waves which lead to a modulation of the trap depth
on the scale of an optical wavelength.

If both beams are linearly polarized along the y-
direction (lin‖lin), interference results in a pure inten-
sity modulation with period D = λ/(2 sin φ) yielding

Û(y) = Ûmax cos2(πy/D). Trapped atoms are therefore
bound in the antinodes of the interference pattern form-
ing a one-dimensional lattice along the y-direction with
lattice constant D. In the case of orthogonal polariza-
tion of the two beams (lin⊥lin), the intensity exhibits no
interference effects, but the polarization is spatially mod-
ulated between linear and circular with the same period
D. As discussed in Sec. II B 2, the light shift depends on
the spin state of the atoms giving rise to a spatial modu-
lation of the potential. For detunings ∆ large compared
to the fine-structure splitting ∆′

FS, the potential depth is
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modulated with a relative amplitude 1
3gF mF ∆′

FS/∆ (see
Eq. 20).

Making use of these interference effects, the ENS group
has investigated Raman cooling (Kuhn et al., 1996) and
sideband cooling (Perrin et al., 1998; Bouchoule et al.,
1998) in a crossed-beam trap for cesium atoms. The trap
consisted of two Nd:YAG laser beams (λ = 1064 nm)
propagating along a vertical xy-plane with a power of
about 5W in each beam. The beams crossed at their
common waists (w0 ≈ 100 µm) under an angle φ = ±53◦

with the horizontal x-axis. The hyperfine splitting of
ground and excited state were small compared to the
detuning of the laser from the D1 and D2 lines of cesium
at 894nm and 852nm, respectively. For the lin⊥lin case,
the comparatively large fine-structure splitting of cesium
(∆′

FS/∆ ≈ 5) lead to spatially modulated potentials with

a small, yet significant modulation amplitude of ≈ Û/15
for the stretched Zeeman states |mF | = I + 1/2.

The trap was loaded from ∼ 107 cesium atoms in a
MOT. The loading efficiency and the shape of the atomic
cloud strongly depended on the laser polarizations of the
dipole trap (Kuhn et al., 1996). The potential wells
formed by interference of the laser beams were used for
resolved-sideband cooling with Raman transitions be-
tween the F = 3 and F = 4 hyperfine ground states.
Great differences in the performance of sideband cool-
ing were found for the lin‖lin and the lin⊥lin case due
to the different character of the potential wells being
weakly or strongly modulated, respectively (Perrin et
al. 1998). By optimizing the sideband cooling in the
lin‖lin configuration, single vibrational states (motional
Fock states) could be prepared in the 1D standing wave.
Atoms were first sideband-cooled into the lowest vibra-
tional state |nosc = 0〉 from where they could be trans-
ferred into other pure |nosc〉 states by Raman transitions
at multiples of the resolved vibrational sidebands (Bou-
choule et al., 1998).

D. Lattices

When adding more laser beams, one can design a
whole variety of interference patterns to create two- and
three-dimensional lattices confining the atoms in microp-
otentials of submicron extension (Deutsch and Jessen,
1998). When combined with efficient cooling methods,
significant population of the vibrational ground state can
be achieved. Many important aspects of these optical
lattices have extensively been studied for near-resonant
trapping fields which simultaneously provide tight con-
finement and dissipation (Jessen and Deutsch, 1996;
Hemmerich et al., 1996; Grynberg and Triche, 1996).

In this chapter, we have so far concentrated on red-
detuned traps because of the conceptual differences in
the practical realization of dipole traps as compared to
blue-detuned traps discussed in the next chapter. In the
case of three-dimensional far-detuned lattices, this dis-

tinction becomes faint since both lattice types are real-
ized through appropriate interference patterns of multi-
ple beams. The atoms are trapped either in the antinodes
(red detuning) or nodes (blue detuning) of the interfer-
ence pattern. The main difference for red and blue detun-
ing lies in the photon scattering rates as discussed in Sec.
III A 3. Here, we shortly present novel developments for
both types of far-off resonance lattices recently realized
by several groups (Anderson et al., 1996; Müller-Seydlitz
et al., 1997; Hamann et al., 1998; Boiron et al., 1998;
DePue et al., 1998). Localized wavepackets oscillating in
conservative microtraps are promising systems in which
to study fundamental questions related to quantum-state
preparation, coherent control and decoherence of macro-
scopic superposition states. Furthermore, optical lattices
can serve as prototype systems for the study of condensed
matter models based on periodic arrangements of weakly
interacting particles.

Anderson et al. (1996) have confined lithium atoms in
three-dimensional optical lattices formed in the intersec-
tion of four laser beams. For lithium, the fine-structure
splitting is only 10GHz leading to ground-state optical
potentials which are independent of the light polariza-
tion and the atomic spin state. A face-centered cubic
lattice with a nearest-neighbor spacing of 1.13λ was real-
ized by a four-beam configuration. Three-dimensional
lattices with periodicity much larger than λ could be
created by reducing the angles subtended by each pos-
sible pair of the four lattice beams 13. Up to 105 atoms
were trapped in the lattice. By reducing the intensity of
the trapping light so that only the coldest atoms from
a MOT were confined in the lattice, a trapped ensem-
ble with an rms velocity spread corresponding to 1.8µK
was prepared. By adiabatically expanding deep potential
wells (see Sec. III A 1), cooling at the expense of smaller
spatial density could be achieved.

The temporal evolution of metastable argon atoms
stored in the intensity nodes of a blue-detuned optical
lattice was investigated by Müller-Seydlitz et al. (1997)
at Konstanz University. The lattice of simple-cubic sym-
metry was formed by three mutually orthogonal stand-
ing waves with othogonal linear polarizations resulting
in isotropic potential wells with a lattice constant of
λ/2 = 397 nm. About 104 atoms are initially captured
in the lattice. Fig. 13 shows time-of-flight spectra for
variable trapping times. After a certain storage time,

13A different approach to create structures with large peri-
odicities has been used by Boiron et al. (1998) by using in-
terference from multiple beams emerging from a holographic
phase grating.
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FIG. 13. Time-of-flight spectra of metastable argon atoms
trapped in the nodes of a three-dimensional far-off resonance
optical lattice. The spectra were taken after various storage
times τ . Atoms were released from the trap by slowly ramp-
ing down the trapping light intensity. Higher-energetic bound
states arrive first, deeper confined states later. After long
storage times, only atoms in the lowest bound state are found.
From Müller-Seydlitz et al. (1998).

the light intensity is ramped down releasing one bound
state after the other. For increasing storage times, the
population of excited bands in the potential wells de-
creases faster than the population of the vibrational
ground-state band leaving about 50 atoms populating
the motional ground state after storage times of about
450ms. Two processes could be identified for this state
selective loss of particles: Firstly, atoms in higher ex-
cited bands have a higher probability of leaving the fi-
nite extension of the trapping field (w0 = 0.55 mm) by
tunneling. Secondly, atoms interacting with the far-off
resonance trapping light (detuning 2 nm from resonance
for the metastables) are optically pumped into the elec-
tronic ground state of argon and are therefore lost from
the trap. The probability for an optical pumping process
depends on the spatial overlap between the optical lattice
field and the atomic wavepacket confined to the potential
well. The smaller the spatial extension of the wavepack-
ets, the smaller is the excitation rate being smallest for
the motional ground state. The reduced photon scatter-
ing probability of deeper bound states is an important
specific property of a blue-detuned optical lattice.

FIG. 14. Resolved-sideband Raman cooling of Cs atoms in
a two-dimensional far-off resonance lattice. Shown is the in-
verse Boltzmann factor 1/qB as a function of the applied mag-
netic field. When the magnetic field tunes the lattice-field in-
duced Raman coupling to the first-order (at Bz ≈ 0.12 G)) or
the second-order (at Bz ≈ 0.24 G)) motional sidebands, Ra-
man cooling is most efficient resulting in the peaks of 1/qB .
Solid circles are data points, the solid line is a fit to the
sum of two Lorentzians. Inset: Corresponding kinetic tem-
peratures measured to determine the Boltzmann factor. The
dashed lines indicates the kinetic temperature of the vibra-
tional ground state. From Hamann et al. (1998).

The first demonstration of resolved-sideband Raman
cooling in a dipole trap explained in Sec. III A 1 was
performed with cesium in a two-dimensional lattice by
a group at University of Arizona in Tucson (Hamann et
al., 1998). The 2D lattice consisted of three coplanar
laser beams with polarizations in the lattice plane. A
magnetic field perpendicular to the lattice plane was ap-
plied to Zeeman-shift the motional states |mF = 4; nosc〉
and |mF = 3; nosc − 1〉 of the upper hyperfine ground
state F = 4 into degeneracy (see Sec. III A 1). By adding
a small polarization component orthogonal to the lattice
plane, Raman coupling between magnetic sublevels with
∆mF = ±1 was introduced. In Fig. 14, the inverse Boltz-
mann factor 1/qB = exp(h̄ωosc/kBT ) is plotted versus
the magnetic field. The inverse Boltzmann factor reaches
a maximum when the two motional states are shifted into
degeneracy by the magnetic field, so that sideband cool-
ing by the lattice field becomes effective. The second,
smaller peak shows well-resolved cooling on the second-
order Raman sideband (∆nosc = −2). As shown by the
inset in Fig. 14, the thermal energy of the atoms closely
approaches the zero-point energy in the potential wells
indicating a population > 95% of the vibrational ground
state.

Unity occupation of sites in a three-dimensional far-off
resonance optical lattice was very recently realized by the
Berkeley group (DePue et al., 1998). In the regime of
unity occupation, interactions between highly localized
atoms have dramatic effects, and studies of collisional
properties of tightly bound wavepackets become possible.
The necessary high densities were achieved by applying
polarization gradient cooling to the 3D lattice filled with
108 cesium atoms, and subsequent adiabatic toggling be-
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tween the 3D lattice and a 1D standing wave. The 3D
lattice was formed by three mutual orthogonal standing
waves with controlled time-phase differences. After the
atoms were cooled in the lattice, the horizontal beams of
the lattice are adiabatically turned off leaving the atoms
in a vertical standing wave trap. Due to their low temper-
ature (700 nK), the atoms were essentially at rest at their
respecive positions. Under the action of the transverse
trapping potential, the atoms radially collapsed towards
the trap centre. All atoms arrived simultaneously at
the centre after about a quarter radial oscillation period.
Thereby, the density in the trap centre was transiently
enhanced by a factor of ten reaching 6×1012 atoms/cm3.
At the moment of peak density, the horizontal lattice
beams were adiabatically turned on again. A substantial
fraction of lattice sites was then multiply occupied and
underwent fast inelastic collisions. After multiply occu-
pied sites had decayed, 44% of the lattice site were oc-
cupied by a single atom cooled close near its vibrational
ground state.

V. BLUE-DETUNED DIPOLE TRAPS

Laser light acts repulsively on the atoms when its fre-
quency is higher than the transition frequency (“blue”
detuning). The basic idea of a blue-detuned dipole trap
is thus to surround a spatial region with repulsive laser
light. Such a trap offers the great advantage of atom stor-
age in a “dark” place with low influence of the trapping
light, which minimizes unwanted effects like photon scat-
tering, light shifts of the atomic levels, and light-assisted
collisional losses. According to the discussion following
Eq. 31, this advantage becomes substantial in the case of
hard repulsive optical walls (κ ≪ 1 in Eq. 31) or large

potential depth for tight confinement (Û ≫ kBT ).
Experimentally, it is not quite as simple and straight-

forward to realize a blue-detuned trap as it is in the
red-detuned case, where already a single tightly focused
laser beam constitutes an interesting dipole trap. There-
fore, the development of appropriate methods to produce
the required repulsive “optical walls” has played a cen-
tral role in experiments with blue-detuned traps. Three
main methods have been applied for this purpose: Light
sheets, produced by strong elliptical focusing of a laser
beam, can be used as nearly flat optical walls (Davidson
et al., 1995; Lee et al., 1996). Hollow laser beams can
provide spatial confinement in at least two dimensions
(Yang et al., 1986). Evanescent waves, formed by total
internal reflection on the surface of a dielectric medium,
represent nearly ideal mirrors to reflect atoms (Cook and
Hill, 1982; Dowling and Gea-Banacloche, 1996). In most
blue-detuned traps, gravity is used to close the confin-
ing potential from above. Such traps are referred to as
gravito-optical traps. As a further experimental possibil-
ity, which we have already discussed in Sec. IVD, atoms
can be trapped in the micropotentials of far blue-detuned

optical lattices (Müller-Seydlitz et al., 1997).
In this Chapter, we discuss various blue-detuned traps

that have been realized experimentally and their partic-
ular features; an overview is given in Table II. In the fol-
lowing, these traps are classified according to the main
method applied for producing the optical walls: Light-
sheet traps (Sec. VA), hollow-beam traps (Sec. VB), and
evanescent-wave traps (Sec. V C).

A. Light-sheet traps

In experiments performed at Stanford University,
Davidson et al. (1995) and Lee et al. (1996, 1998) have
realized light-sheet traps of various configurations and
applied them for rf spectroscopy on trapped atoms and
for optical cooling to high phase-space densities. The
light sheets were derived from the two strongest lines of
an all-line argon-ion laser. A laser power of up to 10W at
514nm and up to 6W at 488nm was focused with cylin-
drical lenses to cross sections of typically 15µm× 1 mm.
For the Na atoms used in the experiments (resonance line
at 589 nm), this leads to maximum light-sheet potentials
in the order of 100µK.

When two light sheets are combined and overlap in
space, there are two ways to avoid perturbing interfer-
ence effects, which could open escape channels in the op-
tical potential. First, if the two light sheets have differ-
ent frequencies then the relevant potential is determined
by the time average over the rapid beat node, in which
the interference averages out. Second, if the light sheets
have same frequencies but orthogonal polarizations then
interference leads to a spatial modulation of the polariza-
tion. In the case of large detunings greatly exceeding the
fine-structure splitting, as it was very well fulfilled in the
Stanford experiments, the polarization modulation has
negligible effect on the dipole potential (see Eq. 20).

In the first experiment (Davidson et al., 1995), two
horizontally propagating light sheets were combined to
form a vertical “V” cross section. This configuration al-
ready provides 3D confinement, as the trapping potential
is closed along the propagation direction due to the di-
vergence of the tightly focused light, see Fig. 15(a). Ver-
tically, the atoms are kept in the trap by gravity. The
gravito-optical trap thus has the form of a boat with a
length of about 2mm (for trap parameters see Table II).

Using this light-sheet trap, Davidson et al. have stored
about 3000 Na atoms and impressively demonstrated the
advantages of blue-detuned dipole traps for spectroscopic
applications. By using the method of separated oscilla-
tory fields, they have measured Ramsey fringes of the
F = 1, mF = 0 → F = 2, mF = 0 hyperfine transition of
the Na ground state. For the excitation of this transition
an rf travelling wave with a frequency of 1.77GHz was
used. The Ramsey fringes were measured by applying
two π/2 rf pulses separated by a time delay of up to 4 s.
Initially, all trapped atoms were optically pumped into
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the lower hyperfine state (F = 1). After applying of the
two rf pulses, the number of atoms transfered into the
upper state (F = 2) was measured by applying a short
pulse of light resonant with the cycling F = 2 → F ′ = 3
transition and detecting the induced fluorescence. The
two central Ramsey fringes observed by varying the rf
frequency for a pulse delay of 4 s are shown in Fig. 15(b).
By analyzing the dependence of the fringe contrast on the
delay between the two rf pulses, a 1/e coherence decay
time of 4.4 s was obtained.

(b)(a)

FIG. 15. Light-sheet trap used for rf spectroscopy. (a)
Laser intensity produced in a horizontal plane 30 µm above
the intersection of the two focused sheets of light. The x, y
dimensions are in microns, and the intensity is normalized to
the peak laser intensity. (b) The central Ramsey fringes ob-
served for rf-induced hyperfine transitions for a measurement
time of 4 s. From Davidson et al. (1995).

In the same experiments, the Stanford group has also
measured the mean residual light shift (ac Stark shift)
of the hyperfine transition frequency as caused by the
trapping light. From the frequency of the central Ramsey
fringe, a corresponding shift of 270mHz was observed.
The absolute light shifts of the two hyperfine sublevels are
larger by the ratio of the optical detuning (∼ 90THz) to
the hyperfine splitting (1.77GHz) and thus amounted to
∼ 14 kHz. This number directly gives the average dipole
potential Ūdip ≈ h × 14 kHz≈ kB × 0.7 µK experienced
by the atom and also allows one to determine an average
photon scattering rate of 0.01 s−1 according to equation
14.

The authors also mention similar experiments per-
formed in a red-detuned dipole trap realized with a
Nd:YAG laser. In this case, the longest observed co-
herence times were ∼300 times lower, which highlights
the advantage of the blue-detuned geometry for in-trap
spectroscopy.

In a later experiment (Lee et al., 1995), the light-sheet
trapping was improved by a new trap geometry in the
form of an inverted pyramid. As illustrated in Fig. 16(a),
this trap was produced by four sheets of light. Due to
the much larger trapping volume provided by the pyra-
midal geometry this trap could be loaded with 4.5× 105

atoms, which constitutes an improvement over the previ-
ous configuration by more than a factor of 100 (see also
Table II). Lee et al. have also tested a similar, tetrahe-

dral box trap, the performance of which was inferior to
the inverted pyramid.

(a) (b)

FIG. 16. Inverted-pyramid trap used for Raman cooling.
(a) Schematic of the trap geometry, and (b) lifetime measure-
ment performed after Raman cooling at a background pressure
of ∼ 3 × 10−11 mbar. From Lee et al. (1996).

The particular motivation of the experiment by Lee
et al. was to obtain high phase-space densities of the
trapped atomic ensemble by optical cooling. The authors
therefore applied 1D Raman cooling (Kasevich and Chu,
1992) as a sub-recoil cooling method, see also Sec. III A 1.
The geometry of the inverted-pyramid trap is very advan-
tageous for getting dense atomic samples, because of a
strong spatial compression with decreasing temperature.
In an ideal inverted pyramid the density n would scale
as T−3 in contrast to a 3D harmonic oscillator, where
n ∝ T−3/2. Moreover, this trap configuration provides
very fast motional coupling between the different degrees
of freedom, which is particularly interesting in case of a
1D cooling scheme.

About 4.5×105 atoms were loaded at a temperature of
7.7µK and a peak density of 2×1010 cm−3. By applying
a sequence of Raman cooling pulses during the follow-
ing 180ms, the temperature of the atoms was reduced
to 1µK and, keeping practically all atoms in the trap, a
peak density of 4×1011 cm−3 was reached. This density
increase by a factor of 20 resulting from a temperature re-
duction by a factor of about 7 indicates that the trap was
already in a regime where the confining potential behaves
rather harmonically than like in an ideal pyramid. This
may be explained by the finite transverse decay length of
the light-sheets potential walls. As a result of the Raman
cooling, the atomic phase-space density was increased by
a factor of 320 over the initial one and reached a value
which was about a factor of 400 from Bose-Einstein con-
densation.

After an initial loss of atoms observed in the first sec-
ond after the Raman cooling process, an exponential de-
cay of the trapped atom number was measured with a
time constant of 7 s, see Fig. 16(b). This loss did not
significantly depend on the background pressure below
10−10 mbar, which points to the presence of an additional
single-particle loss mechanism. This loss was consistent

26



with an observed heating process in the trap that 30
times exceeded the calculated heating by photon scat-
tering. This heating of unknown origin was identified as
the main obstacle to implement evaporative cooling in
the inverted pyramid trap. The experiments moreover
showed evidence that ground-state hyperfine-changing
collisions, ejecting atoms out of the trap, were limiting
the maximum density achievable with Raman cooling to
∼1012 cm−3.

In a later experiment, Lee and Chu (1998) used the
inverted-pyramid trap for preparing a Raman-cooled
sample with spin polarization in any of the three mag-
netic sub-levels of the lower hyperfine ground state (F =
1). A small bias magnetic field was used to lift the degen-
eracy of the ground state and appropriate polarization
was chosen for the Raman cooling light. The attained
temperature and phase-space density was similar to the
unpolarized case. This experiment can be seen as a nice
illustration of the general advantage of dipole trapping
to leave the full ground-state manifold available for ex-
periments.

B. Hollow-beam traps

Hollow blue-detuned laser beams, which provide ra-
dial confinement, are particularly interesting and versa-
tile tools for the construction of dipole traps. Hollow
laser beams may be divided into two classes: Beams
in pure higher-order Laguerre-Gaussian (LG) modes and
other hollow beams which cannot be represented as sin-
gle eigenmodes of an optical resonator. The main differ-
ence is that LG beams preserve their transverse profile
with propagation (only converging or diverging in width),
which is of particular interest for atom guiding (Dholakia,
1998; Schiffer et al., 1998). Other, non-LG hollow beams
can change their profile substantially, thus offering addi-
tional features of interest for atom trapping.

A Laguerre-Gaussian mode LGp l is characterized by a
radial index p and an azimuthal index l. A hollow beam
with a “doughnut” profile is obtained for p = 0 and l 6= 0
with an intensity distribution given by

I0 l(r) = P
2l+1r2l

πl! w
2(l+1)
0

exp(−2r2/w2
0) ; (45)

here P is the power and w0 is the waist of the beam.
For l = 0 this equation gives the transverse profile of a
usual Gaussian beam (TEM00 mode) as described by Eq.
36. The higher the mode index l, the larger is the ratio
between the beam radius and the width of the ring, i.e.
the harder is the repulsive optical wall radially confining
the atoms and the weaker is heating by photon scattering.

1. Plugged doughnut-beam trap

The dougnut-beam trap shown in Fig. 17(a) was re-
cently realized by Kuga et al. (1997) at the University
of Tokyo; see also Table II. The LG03 doughnut beam
(w0=0.6mm) was derived from a laser which was forced
to oscillate in a Hermite-Gaussian HG03 mode by inser-
tion of a thin wire into the cavity. An astigmatic mode
convertor (Beijersbergen et al., 1993) then transformed
the beam into the LG03 mode. As a LG beam does not
provide axial confinement, the hollow beam was plugged
by two additional laser beams (diameter 0.7mm), which
were separated by 2 mm and perpendicularly intersected
the hollow beam. The plugging beams were derived from
the recycled doughnut beam.

An exponential decay of the stored atom number was
observed with a time constant of about 150ms [see Fig.
17(b)], which was explained by heating out of the trap
by photon scattering. The authors also observed that
trapping in a LG01 mode showed inferior performance
with very short lifetimes of a few milliseconds only, which
highlights the benefit of “hard” optical walls for reducing
heating by photon scattering.
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FIG. 17. (a) Plugged doughnut beam trap, and (b) measure-
ment of the storage time (filled squares). The filled circles re-
fer to a 2D trap formed by the doughnut beam alone without
plugging beams (no axial confinement). Adapted from Kuga
et al. (1997).

In subsequent experiments (Torii et al., 1998), the stor-
age time of the trap was improved by application of
a pulsed optical molasses cooling scheme to a value of
1.5 s, which then was dominated by collisions with the
background gas. This non-continuous molasses cooling
scheme allows one to cool the atoms down to nearly the
same temperatures as in a continuous cooling scheme,
but suppresses trap losses by light-assisted collisions and
the interference of light shifts from the molasses light
with the trapping potential. Moreover, potentially severe
losses by hyperfine-changing collisions (see Sec. III C) can
be strongly reduced by keeping the atoms in the lower hy-
perfine ground states in the off-times of the molasses. In
such a pulsed cooling scheme, the off-time can be as long
as heating by photon scattering (see Sec. III A 2) does
not significantly degrade the trap performance. The on-
time can be as short as the typical cooling time in the
molasses.
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2. Single-beam traps

A blue-detuned trap based on a single laser beam was
recently demonstrated by Ozeri et al. (1998) at the Weiz-
man Institute in Israel; see also Table II. The trapping
beam was produced in an experimentally very simple way
by passing a single Gaussian beam through a phase plate
of appropriate size, which shifted the center of the beam
by a phase angle of π. In the focus of such a beam, de-
structive interference leads to a reduced or even vanishing
light intensity. By choosing the proper ratio between the
diameter of the phase plate and the laser beam diameter,
Ozeri et al. obtained a darkness ratio (central intensity
normalized to maximum intensity) of 1/750. Close to the
center of this single-beam trap, the intensity increases
radially with the fourth power of the distance (like in
the case of a LG02 beam) and axially the dependence is
quadratic.

In order to measure the average light intensity experi-
enced by the atoms in the trap, Ozeri et al. have studied
the relaxation of hyperfine population caused by photon
scattering from the trapping light in a similar way as done
by Cline et al. (1994) in a red-detuned far-off-resonance
trap; see also Sec. IVA2. From measurements performed
at a detuning of 0.5 nm it was concluded that the average
intensity experienced by a trapped atom was as low as
∼1/700 of the maximum intensity. In another series of
measurements they observed that, at constant tempera-
ture, the photon scattering rate scaled linearly with the
inverse detuning. This observed behavior represents a
nice confirmation of Eq. 29, which for a power-law po-
tential directly relates the average scattering rate to the
temperature with an inverse proportionality to the de-
tuning.

In a recent proposal, Zemanek and Foot (1998) consid-
ered a blue-detuned dipole trap formed by two counter-
propagating laser beams of equal central intensities, but
different diameters. Along the axis of such a standing-
wave configuration, completely destructive interference
would lead to minima of the dipole potential with zero
intensity. These traps would be radially closed because
of the incomplete destructive interference at off-axis po-
sitions. This resulting linear array of three-dimensional
dipole traps could combine the interesting features of
standing-wave trapping schemes (see Sec. IVB) with the
advantages of blue detuning. Experimentally, it seems
straightforward to realize such a trap by retroreflection
and appropriate attenuation of a single slightly converg-
ing laser beam.

3. Conical atom trap

A single-beam gravito-optical trap was recently
demonstrated by Ovchinnikov et al. (1998) at the MPI
für Kernphysik in Heidelberg. The “conical atom trap”
(CAT), illustrated in Fig. 18(a), is based on a conical hol-

low beam and combines experimental simplicity with sev-
eral features of interest for the trapping of a large number
of atoms at high densities: high loading efficiency, tight
confinement, low collisional losses, and efficient cooling.

In the experiment (parameters see Table II) the up-
ward directed conical trapping beam was generated by
using an arrangement of two axicons and one spherical
lens. In the focal plane, the beam profile was roughly
Gaussian with a diameter of about 100µm. Within a
few millimeters distance from the focus, the beam evolved
into a ring-shaped profile with a dark central region re-
sembling a higher-order Laguerre-Gaussian mode. The
opening angle of the conical beam was about 150mrad.

The trap was operated relatively close to resonance as
compared to the other blue-detuned traps discussed so
far. With an optical detuning of 3 GHz (12 GHz) with
respect to the lower (upper) hyperfine ground state of
Cs a large potential depth was realized, which together
with the funnel-like geometry facilitated the transfer of as
much as 80% of all atoms from the MOT into the CAT.
The relatively small detuning requires efficient cooling
for removing the heat resulting from photon scattering
from the trapping light. For this purpose, an optical mo-
lasses was applied continuously to cool atoms in the up-
per hyperfine ground state. This cooling, however, takes
place with an inherently reduced duty cycle and is thus
similar to the pulsed molasses cooling scheme of Torii et
al. (1998), which was discussed before. In the molasses
scheme applied in the CAT, the short phases of cooling
in the upper hyperfine ground state (typically 50µs) are
self-terminating by optical pumping into the lower hyper-
fine level. There the atoms stay for a much longer time
(typically >

∼ 1ms) until they are repumped by the light
of the intense conical trapping beam.
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FIG. 18. (a) Illustration of the conical atom trap (CAT).
(b) Fluorescence image of atoms in the CAT (lower, elongated
blob) combined with an image of atoms in the MOT (upper
spot). The dashed lines indicate the conical trapping field.
Adapted from Ovchinnikov et al. (1998).

This inherent duty cycle for the molasses provides cool-
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ing phases which are long enough to efficiently remove
heat, while the average population of the upper hyper-
fine state is kept very low. This efficiently suppresses
trap loss due to hyperfine-changing collisions (see Sec.
III C). At an atomic number density of ∼ 1011 cm−3 life-
time measurements of the trapped atoms (1/e lifetime
of 7.8 s due to background gas collisions) showed no sig-
nificant loss due to ultracold collisions, which indirectly
confirmed the predominant population of the lower hy-
perfine ground state.

The CAT was also operated in a pure “reflection cool-
ing” mode without any molasses cooling, similar to the
situation that was theoretially considered by Morsch and
Meacher (1998). Reflection cooling (Ovchinnikov et al.,
1995a and b) is based on the inelastic reflection of an
atom from a blue-detuned light field, as discussed in more
detail in the following section in context with evanescent
waves. In a Sisyphus-like process the atom is pumped
from the strongly repulsive lower to the weakly repulsive
upper hyperfine state. A closed cooling cycle requires
a weak repumping beam to bring the atom back to the
lower state. Such a beam was applied in the CAT experi-
ment from above. The detuning of the conical beam was
increased to a few ten GHz to optimize reflection cooling.
Because of the lower potential depth the loading was less
efficient (∼10% transfer from the MOT instead of 80%
reached before), but stable background-gas limited trap-
ping was achieved. Without the repumping beam, atoms
were rapidly heated out of the trap. These observations
clearly demonstrated reflection cooling in a blue-detuned
trap made of free-propagating light fields. However, op-
timum reflection cooling requires very steep optical walls
so that only evanescent waves are suited to reach tem-
peratures close to the recoil limit by this mechanism, as
will be discussed in Sec. V C3.

C. Evanescent-wave traps

A hard repulsive optical wall with nearly ideal proper-
ties can be realized by a blue-detuned evanescent wave
(EW), produced by total internal reflection of a laser
beam from a dielectric-vacuum interface. In the vacuum
the EW intensity falls off exponentially within a typical
distance of λ/2π from the surface and thus provides a
very large gradient. The use of an EW as a mirror for
neutral atoms was suggested by Cook and Hill (1982),
who also proposed to trap atoms in a box realized with
EW mirrors. The first experimental demonstration of
an atom mirror was made by Balykin et al. (1987) by
grazing-incidence reflection of a thermal atomic beam.
A few years later, Kasevich et al. (1990) observed re-
flection of cold atoms at normal incidence. Since then
many experiments have been conducted with EW atom
mirrors. An extensive review on EW atom mirrors and
related trapping schemes has already been given by Dowl-
ing and Gea-Banacloche (1996). We thus concentrate on

the essential issues and some interesting, new develop-
ments.

1. Evanescent-wave atom mirror

The exponential shape of the repulsive optical poten-
tial of a far-detuned EW leads to simple expressions for
the basic properties of such an atom mirror. The EW
intensity as a function of the distance z from the surface
is given by

I(z) = I0 exp(−2z/Λ) , (46)

where the 1/e2 decay length Λ = λ/(2π
√

n2 sin2 θ − 1)
depends on the angle of incidence θ and the refractive
index n of the dielectric. The maximum EW intensity
I0 is related to the incident light intensity I1 by I0/I1 =
4n cos2 θ/(n2 − 1) .

The repulsive dipole potential of an atom mirror is in-
dependent of the magnetic substate if the detuning is
large compared to the excited-state hyperfine splitting
and the EW is linearly polarized (see Sec. 2); the latter
is obtained for an incoming linear polarization perpen-
dicular to the plane of incidence (TE polarization). In
the interesting case of low saturation, the EW dipole po-
tential can then be calculated according to Eq. 19.

A very important quantity to characterize the EW re-
flection process is its probability to take place coherently,
i.e. without spontaneous photon scattering. The prob-
ability for an (in)coherent reflection can be calculated
by integrating the intensity-dependent scattering rate Γsc

(Eq. 21) over the classical trajectory of the atom in the
repulsive potential. For large enough laser detuning (still
close to one of the D lines), the resulting small probabil-
ity psp ≪ 1 for an incoherent reflection process is given
by

psp =
mΛ

h̄

Γ

∆
v⊥ , (47)

where v⊥ is the velocity component perpendicular to the
surface.

The light shift of the ground-state sublevel integrated
over time in a single reflection process corresponds to a
phase shift

Φls =
mΛ

h̄
v⊥ (48)

experienced by the atom. The simple relation psp =
(Γ/∆)Φls is a result of the fundamental connection be-
tween the absorptive and dispersive effect of the interac-
tion with the light field (see also Eq 14). As an interesting
consequence of the exponential shape of the EW poten-
tial, both equations Eq. 47 and Eq. 48 do not depend
on the intensity of the light field, as long as the poten-
tial barrier is high enough. For higher/lower intensities
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the reflection just takes place at larger/smaller distances
from the surface.

Very close to the surface (z <
∼ 100 nm), the van-der-

Waals attraction becomes significant. Its main effect is
to reduce the maximum potential barrier provided by the
EW mirror (Landragin et al., 1996b). For small kinetic
energies, the reflected atoms do not penetrate deeply into
the EW and thus do not feel the surface attraction. We
have thus neglected the effect of the van-der-Waals force
in Eqs. 47 and 48, and we will do so in the following.

2. Gravito-optical cavities

A great deal of interest in EW atom mirrors has been
stimulated by the intriguing prospect to build resonators
and cavities for atomic de-Broglie waves (Balykin and
Letokhov, 1989; Wallis et al., 1992). The simplest way
to realize such a scheme is a single atom mirror on which
the atoms classically bounce like on a trampoline. Such
a trapping scheme is referred to as gravito-optical cavity.

The time tb between two bounces in a gravito-optical
cavity is related to the maximum height h and the maxi-
mum velocity v⊥ of the atoms by tb = 2

√

2h/g = 2v⊥/g,
where g is the gravitational acceleration. Using Eq. 47
for the probability for photon scattering per bounce, the
average photon scattering rate can be expressed as

Γ̄sc =
psp

tb
=

mgΛ

2h̄

Γ

∆
. (49)

Analogously using Eq. 48, the mean light shift δω̄ls =
Ūdip/h̄ experienced by the bouncing atom is obtained as

δω̄ls =
Φls

tb
=

mgΛ

2h̄
. (50)

It is a remarkable consequence of the exponential shape
of the EW potential that Γ̄sc and δω̄ls do not depend on
the energy of the atom. For an atom with less energy in
a gravito-optical cavity, the decrease in scattering proba-
bility and light shift is exactly compensated by the higher
bounce rate.

The average scattering rate Γ̄sc can be interpreted as
the decoherence rate of gravito-optical resonator due to
photon scattering. It also determines the heating power
according to Eq. 23. The mean light shift is of interest
for possible spectroscopic applications of gravito-optical
cavities.

The eigenenergies of the vertical modes in a gravito-
optical cavity can be approximately calculated by ide-
alizing the EW potential as a hard wall (Wallis et al.,
1992). In this case the vertical potential has the shape
of a wedge and the energy of the n-th vertical mode is
given by

En = h̄ωv

(

n −
1

4

)2/3

, (51)

where ωv = (9π2mg2/8h̄)1/3 is a characteristic frequency.
For example, for cesium atoms ωv/2π=2080 Hz, which
corresponds to a temperature of h̄ωv/kB ≃ 95 nK. Con-
sequently, the population of a single vertical mode with
many atoms, a challenging issue for future experiments,
requires cooling below this temperature.

As an important step for EW trapping, the ENS group
in Paris observed the bouncing of atoms in a stable
gravito-optical cavity (Aminoff et al., 1993). The atom
mirror used in the experiment (diameter ∼ 1.5mm) was
produced on a concave spherical substrate (radius of cur-
vature 2 cm) to obtain additional transverse confinement
of the atomic motion (Wallis et al., 1992); the resulting
transverse trap depth was about 5µK.

In the set-up sketched in Fig.19(a), about 107 cold
atoms were dropped onto the mirror from a MOT lo-
cated at a height of 3mm above the prism (correspond-
ing bounce period tb = 50 ms). The bouncing atoms
were detected by measuring the fluorescence in a reso-
nant probe beam, which was applied to the atoms after a
variable time delay. The experimental results displayed
in Fig. 19(b) show up to ten resolved bounces, after which
the number of atoms dropped below the detection limit.
The measured loss per bounce of ∼ 40% was attributed
to photon scattering during the EW reflection process
(∼ 5% according to Eq. 47), photon scattering from stray
light from the mirror (∼ 10%), collisions with the back-
ground gas (∼ 10%), and another, not identified source
of loss (∼ 20%). An explanation for the latter may be the
diffusive reflection from an EW mirror, as observed later
by Landragin et al. (1996a). The ENS gravito-optical
cavity represents the first atom trap realized with evanes-
cent waves.
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FIG. 19. Observation of atoms bouncing in a grav-
ito-optical cavity. (a) Experimental set-up, and (b) number
of atoms detected in the probe beam for different times after
their release (points). The solid curve is the result of a corre-
sponding Monte-Carlo simulation. Adapted from Aminoff et
al. (1993).

3. Gravito-optical surface trap

A new step for gravito-optical EW traps was the intro-
duction of a dissipative mechanism, following suggestions
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by Ovchinnikov et al. (1995a) and Söding et al. (1995)
to cool atoms by inelastic reflections. In a correspond-
ing experiment at the MPI für Kernphysik in Heidel-
berg, Ovchinnikov et al. (1997) have realized the gravito-
optical surface trap (GOST) schematically shown in Fig.
20(a); see also Table II. This trap facilitates storage and
efficient cooling of a dense atomic gas closely above an
EW atom mirror.

A flat atom mirror was used in the GOST and hori-
zontal confinement was achieved by a hollow, cylindrical
laser beam, far blue-detuned from the atomic resonance.
This beam with a ring-shaped transverse intensity profile
providing very steep optical walls was generated using an
axicon (Manek et al., 1998). A Laguerre-Gaussian beam
of similar performance would require extremly high or-
der (about LG0, 100). The optical potentials of the GOST
thus come very close to ideal hard walls, which leads to a
strong reduction of photon scattering from the trapping
light even relatively close to resonance.
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FIG. 20. (a) Schematic of the gravito-optical surface trap
(GOST). (b) Illustration of the evanescent-wave cooling cycle.
The dot indicates an atom approaching the dielectric surface
in the lower hyperfine state, scatters an EW photon, leaves
the EW in the upper, less repulsive ground state, and is finally
pumped back into the lower state.

Cooling by inelastic EW reflections (evanescent-wave
Sisyphus cooling) is the key to stable trapping in the
GOST. The basic mechanism, which was experimentally
studied before in grazing-incidence reflection of an atomic
beam (Ovchinnikov et al. 1995b; Laryushin et al., 1996)
and normal-incidence reflection of cold atoms (Desbiolles
et al., 1996), is based on the splitting of the 2S1/2 ground
state of an alkali atom into two hyperfine sublevels. In
the case of linear EW polarization, the atom can be mod-
eled as a three-level scheme (Söding et al., 1995; see also
Sec. II B 2) with two ground states separated by ∆HFS

and one excited state, for which the hyperfine splitting
can be neglected.

An inelastic reflection takes place when the atom en-
ters the EW in the lower ground state and, by scat-
tering an EW photon during the reflection process, is
pumped into the less repulsive upper state; see Fig. 20(b).
The cooling cycle is then closed by pumping the atom
back into the lower hyperfine state with a weak reso-

nant repumping laser (coming from above in Fig. 20(a)).
The mean energy loss ∆E⊥ from the motion perpen-
dicular to the surface per inelastic reflection is given by
∆E⊥/E⊥ = − 2

3∆HFS/(∆ + ∆HFS), where E⊥ = mv2
⊥/2

is the kinetic energy of the incoming atom and ∆ is
the relevant detuning with respect to the lower hyper-
fine state. With the probability psp for an incoherent
reflection according to Eq. 47, the branching ratio q for
spontaneous scattering into the upper ground state, and
the bounce rate t−1

b = g/2v⊥ EW Sisyphus cooling can
be characterized by a simple cooling rate

β =
q

3

∆HFS

∆ + ∆HFS

mgΛ

h̄

Γ

∆
. (52)

The vertical motion is damped exponentially because the
average photon scattering rate is independent of the ki-
netic energy (see Eq. 49). The final attainable tempera-
ture is recoil-limited to a value of ∼ 10 Trec, similar to a
polarization-gradient optical molasses (see Sec. III A 1).

The GOST was experimentally realized for Cs atoms,
the high mass of which is very favorable for gravito-
optical trapping: In the gravitational potential, the re-
coil temperature Trec corresponds to a height hrec =
kBTrec/(mg), which for the heavy Cs atoms is partic-
ularly low (hrec = 1.3 µm, see also Table I). As a conse-
quence, Cs atoms cooled close to the recoil limit can be
accumulated very close to the dielectric surface.

In the experiment, trapped atoms were observed for
storage times up to 25 s, corresponding to more than
10.000 (unresolved) bounces. The observed exponential
loss with a 1/e-lifetime of 6 s was completely consistent
with collisions with the background gas. By time-of-
flight diagnostics, a temperature of 3.0µK was measured,
which is quite close to the theoretical cooling limit. In
thermal equilibrium, the number density as function of
the distance from the surface follows from Eq. 32 (in this
case, equivalent to the barometric equation), which for
the measured temperature of 3.0µK corresponds to an
exponential decay with a 1/e height as low as 19µm.

FIG. 21. Cooling dynamics in the GOST. The vertical
(◦) and horizontal (•) temperatures measured for about 105

trapped Cs atoms are plotted as a function of the storage
time. The solid lines are theoretical fits based on Eq. 52 and
the assumption of an EW reflection with a small diffusive,
non-specular component. From Ovchinnikov et al. (1997).
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The cooling dynamics observed in the experiments is
shown in Fig. 21. The initial horizontal temperature is
determined by the temperature of the MOT, whereas
the much higher initial vertical temperature results from
the release of the atoms at a height of ∼ 800µm. With
increasing storage time, the vertical temperature fol-
lows a nearly exponential decay with a time constant of
400 ms, in good agreement with the cooling rate accord-
ing to Eq. 52 (with ∆/2π = 1GHz, ∆HFS/2π = 9.2GHz,
q = 0.25). The temperature of the horizontal motion,
which is not cooled directly, follows the vertical one with
a clearly visible time lag and approaches the same final
value of about 3µK. This apparent motional coupling can
be fully explained by a small diffusive component of the
reflection from the EW atom mirror, as observed before
by Landragin et al. (1996a).

A very important feature of the GOST and the
evanescent-wave cooling mechanism is the predominant
population of the absolute internal atomic ground state:
The lower hyperfine level is populated by more than
99.99% of the atoms. A unique feature of EW cooling
is that the trapping and cooling light does not penetrate
the atomic sample. Moreover, a possible reabsorption
of scattered trap photons is strongly reduced because
of the large surface area for photons to escape. Due to
these facts trap loss by ultracold collisions (see Sec. III C)
and other density-limiting mechanisms are strongly sup-
pressed as compared to a MOT. One can therefore expect
EW Sisyphus cooling to work very well up to number den-
sities of 1013 cm−3, or even higher (Söding et al., 1995).
In the first GOST experiments, this interesting regime
was out of reach because the trap could be loaded with
only 105 atoms, leading to peak densities of 2×1010 cm−3.
In present experiments with the GOST, being performed
with a substantially improved loading scheme, the high-
density regime of evanescent-wave cooling is being ex-
plored.

The GOST offers several interesting options for future
experiments on dense atomic gases (Engler et al., 1998).
By detuning the EW and the hollow beam very far from
resonance, a situation can be reached in which the photon
scattering rate is far below 1 s−1. For a sufficiently dense
gas, one can then expect very good starting conditions
for evaporative cooling, which may be implemented by
ramping down the EW potential. This appears to be
a promising route to quantum-degeneracy of Cs, which
because of anomalously fast dipolar relaxation seems not
attainable in a magnetic trap (Söding et al., 1998; Guéry-
Odelin et al., 1998).

Other interesting applications of the GOST, arising
from its particular geometry, are related to the possi-
ble formation of a two-dimensional quantum gas. The
vertical motion is much more strongly confined than the
horizontal one, so that the corresponding level spacings
of the quantized atomic motion differ by nearly six or-
ders of magnitude. In such a highly anisotropic situ-
ation, Bose-Einstein condensation is predicted to occur
in two distinct steps (van Druten and Ketterle, 1997).

First, the vertical motion condenses into its ground state
(Wallis, 1996). Then, in a second step occuring at much
lower temperatures, the system condenses to its abso-
lute ground state. The highly anisotropic nature of the
trapping potential may be further enhanced by addition
of a second, attractive evanescent-wave (Ovchinnikov et
al., 1991). This can create a wavelength-sized poten-
tial well close to the surface, which could be efficiently
loaded by elastic collisions. The situation would then re-
semble the situation of atomic hydrogen trapped on liq-
uid helium, for which evidence of a Kosterlitz-Thouless
phase transition was reported very recently (Safonov et
al., 1998). The prospect to realize such a system with
alkali atoms14 is of particular interest to study effects of
quantum-degeneracy in a 2D system.

VI. CONCLUDING REMARKS

In this review, we have discussed the basic physics
of dipole trapping in far-detuned light, the typical ex-
perimental techniques and procedures, and the different
presently available trap types along with their specific
features. In the discussed experiments, optical dipole
traps have already shown their great potential for a va-
riety of different applications.

The particular advantages of dipole trapping can be
summarized in the following three main points:

• The ground-state trapping potential can be de-
signed to be either independent of the particular
sub-level, or dependent in a well-defined way. In
the first case, the internal ground-state dynamics
under the influence of additional fields behaves in
the same way as in the case of a free atom.

• Photon scattering from the trap light can take place
on an extremely long time scale exceeding many
seconds. The trap then comes close to the ideal
case of a conservative, non-dissipative trapping po-
tential, allowing for long coherence times of the in-
ternal and external dynamics of the stored atoms.

• Light fields allow one to realize a great variety of
different trap geometries, e.g., highly anisotropic
traps, multi-well potentials, mesoscopic and mi-
croscopic traps, and potentials for low-dimensional
systems.

Regarding these features, the main research lines for fu-
ture experiments in optical dipole trapping may be seen
in the following fields:

14Other experimental approaches to two-dimensional sys-
tems based on dipole trapping make use of the particular
properties of the optical transition structure in metastable
noble gas atoms (Schneble et al., 1998; Gauck et al., 1998).
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Ultracold collisions and quantum gases. The behav-
ior of ultracold, potentially quantum-degenerate atomic
gases is governed by their specific collisional properties,
which strongly depend on the particular species, the in-
ternal states of the colliding atoms, and possible external
fields. In this respect, dipole traps offer unique possibili-
ties as they allow to store atoms in any sub-state or com-
bination of sub-states for the study of collisional prop-
erties and collective behavior. Experiments along these
lines have already been performed (Gardner et al., 1995;
Tsai et al., 1997; Stenger et al., 1998; Miesner et al.,
1998b), but it seems that this has just opened the door
to many other studies involving other atomic species, or
even mixtures of different species (Engler et al., 1998).

Of particular importance is the trapping of atoms
in the absolute internal ground state, which cannot be
trapped magnetically. In this state, inelastic binary col-
lision are completely suppressed for energetical reasons.
In this respect, an ultracold cesium gas represents a par-
ticularly interesting situation, as Bose-Einstein conden-
sation seems only attainable for the absolute ground state
(Söding et al., 1998; Guéry-Odelin et al., 1998). As a con-
sequence, an optical trap may be the only way to realize
a quantum-degenerate gas of Cs atoms.

Tuning of scattering properties by external fields is an-
other very interesting subject. In this respect, Feshbach
resonances at particular values of magnetic fields play a
very important role. In optical traps one is completely
free to choose any magnetic field without changing the
trap itself. Using this advantage, Feshbach resonances
have been observed for sodium and rubidium (Inouye et
al., 1998; Courteille et al., 1998), and future experimen-
tal work will certainly explore corresponding collisional
properties of other atomic species.

Highly anisotropic dipole traps offer a unique envi-
ronment for the realization of low-dimensional quantum
gases. In this respect, interesting trapping configura-
tions are standing-wave traps (Sec. IVB), optical lattices
(Sec. IVD), evanescent-wave surface traps (Sec. VC),
and combinations of such trapping fields (Gauck et al.,
1998). New phenomena could be related to a step-wise
Bose-Einstein condensation (van Druten and Ketterle,
1997) and modifications of scattering properties in cases,
in which the atomic motion is restricted to a spatial scale
on the order of the s-wave scattering length.

Another fascinating issue would be to study collisional
properties of ultracold fermions (e.g., the alkali atoms
6Li and 40K) with the challenging goal to produce a
quantum-degenerate Fermi gas. Direct optical cooling
in a standing-wave dipole trap by degenerate sideband
cooling, similar to the method of Vuletic et al. (1998),
seems to be a particularly promising route.

Spin physics and magnetic resonance. As dipole traps
allow for confinement with negligible effect on the atomic
ground-state spin, experiments related to the coherent
ground-state dynamics in external fields can be per-
formed in essentially the same way as in the case of
free atoms. In such experiments, the trap would provide

much longer observation times as attainable in atomic
beams or vapor cells. As a further advantage, trapped
atoms stay at the same place which keeps inhomogeneties
of external fields very low. First demonstrations of along
this line are the experiments by Davidson et al. (1995)
and Zielonkowski et al. (1998b), as discussed in Sec.
VA and IVB 3, respectively. In principle, a dipole trap
constitutes an appropriate environment to perform any
kind of magnetic resonance experiment with optically
and magnetically manipulated ground-state spins (Suter,
1997). This could be of interest, e.g., for storing and
processing quantum information in the spin degrees of
freedom.

A possible, very fundamental application would be the
measurement of a permanent electric dipole moment of a
heavy paramagnetic atom like cesium (Khriplovich and
Lamoreaux, 1997). Such an experiment, testing time-
reversal symmetry, could greatly benefit from extremely
long spin lifetimes and coherence times of spin polariza-
tion, which seem to be attainable in dipole traps.

Trapping of other atomic species and molecules. Op-
tical dipole traps do neither rely on a resonant interac-
tion with laser light nor on spontaneous photon scatter-
ing. Therefore any polarizable particle can be trapped in
powerful, sufficiently far-detuned light. For this purpose,
the quasi-electrostatic trapping with far-infrared laser
sources, like CO2 lasers (see Secs. IVA5 and IVB4),
appears to be very attractive. The trapping mecha-
nism could be applied to many other atomic species or
molecules, which are not accessible to direct laser cooling.
The problem is not the trapping itself, but the cooling
to the very low temperatures required for trap loading.
There may be several ways to overcome this problem.

A possible way to load a dipole trap could be based
on buffer-gas loading of atoms or molecules into mag-
netic traps (Kim et al., 1997; Weinstein et al., 1998)
and subsequent evaporative cooling. The effectiveness of
cryogenic loading and subsequent evaporative cooling is
demonstrated by the recent attainment of Bose-Einstein
condensation of atomic hydrogen confined in a magnetic
trap (Fried et al., 1998), without any optical cooling in-
volved. Similar strategies based on buffer-gas loading
could open ways for filling optical dipole traps with many
more atomic species than presently available or even with
molecules.

Another possible way could be the production of ultra-
cold molecules by photoassociation of laser-cooled atoms
(Fioretti et al., 1998). The translational energies of these
molecules can be low enough for loading into far-infrared
dipole traps. A very recent experiment by Takekoshi et
al. (1998) indeed reports evidence of dipole trapping of a
few Cs2 molecules in a CO2-laser beam, which may just
be the beginning of a new class of experiments in dipole
trapping.

Optical dipole traps can be seen as storage devices at
the low end of the presently explorable energy scale. We
are convinced that future experiments exploiting the par-
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ticular advantages of these traps will reveal interesting
new phenomena and show many surprises.
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TABLE I. Properties of the alkali atoms of relevance for optical dipole trapping. Transition wavelengths λD2
and λD1

,
fine-structure splitting ∆′

FS, nuclear spin I, ground-state hyperfine splitting ∆HFS, excited-state hyperfine splitting ∆′
HFS, natural

linewidth Γ, recoil temperature Trec (for D2 line), and corresponding height hrec = kBTrec/(mg) in the field of gravity.�D2;D1 �0FS=2� I �HFS=2� �0HFS=2� �=2� Trec hrec(nm) (GHz) (MHz) (MHz) (MHz) (�K) (�m)6Li 670.9, 670.9 10 1 228 4.6 5.9 7.1 10007Li 3/2 804 18 6.1 74023Na 589.0, 589.6 510 3/2 1772 112 9.9 2.4 8839K 766.7, 769.9 1500 3/2 462 34 6.2 0.84 1840K 3 1286 100 0.81 1741K 3/2 254 17 0.79 1685Rb 780.0, 794.8 7200 5/2 3036 213 5.9 0.37 3.787Rb 3/2 6835 496 0.36 3.5133Cs 852.1, 894.3 16600 7/2 9192 604 5.3 0.20 1.3

2
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TABLE II. Parameters of various experimentally realized blue-detuned dipole traps.trap con�ning atomic detuning, # atoms, cooling, speciality�eldsa species depth transfer temperaturelight-sheet trap LS Na � 100THz 3000 no very longDavidson et al. (1995) gravity 10�K coherence timesinverted pyramid LS Na � 100THz 4� 105 Raman high phase-Lee et al. (1996) gravity 20�K 1.0�K space densitiesplugged doughnut beam HB Rb 60GHz 108 molassesb large numberKuga et al. (1997) 40�K 30 % 13�K of atomssingle-beam trap HB Rb 250GHz c 105 no singleOzeri et al. (1998) laser beamconical atom trap HB Cs 3GHz 106 molassesd high loadingOvchinnikov et al. (1998) gravity � 1mK 80 % � 10�K e�ciencygravito-optical cavity EW Cs 1 { 10GHz 107 no ten resolvedAmino� et al. (1993) gravity 1mK e bouncesgrav.-opt. surface trap EW/HB Cs 1GHz f 105 re
ection atoms veryOvchinnikov et al. (1997) gravity 100 �K 30 % 3�K close to surfaceaLS: light sheets, HB: hollow beam, EW: evanescent wave.bsee Torii et al. (1998).ctrapping studied in a wide detuning range between 50GHz and 15THz.dpure re
ection cooling demonstrated at a trap detuning of 30GHz.enumber refers to vertical motion only. The horizontal depth was much lower (5�K).fnumber refers to evanescent wave. The hollow-beam detuning was much larger (100GHz).
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