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1. Introduction

Laser cooling and trapping of atoms is located at the inter-
section of modern laser physics and atom optics. It has been 
undergoing galloping progress during the past 30 years. Laser 
cooling has found numerous relevant applications, such as 
Bose–Einstein condensation, atomic nanolithography, quan-
tum informatics and atom interferometry. Especially, it should 
be noted that laser cooling has great prospects for metrology. 
In particular, laser cooling and trapping techniques, together 
with modern spectroscopic methods, promise unprecedented 
accuracy of frequency and time standards [1].

Since 1967 the second, the base unit of time in several 
systems of units, has been defined based on the microwave 
transition in atomic caesium. Modern caesium microwave 
fountain-type standards have relative uncertainty of the order 
of 10–16 [2]. These types of standards, most likely, have reached 
their limit of potential accuracy. Major hopes for significantly 
enhancing metrological properties of frequency and time 

standards are connected with the optical spectral band [3] and 
usage of the femtosecond frequency comb [4]. In this direction, 
in the past ten years, increased attention has been paid to opti-
cal clocks based on laser-cooled single ions confined in elec-
tromagnetic traps [5] or on large numbers of atoms trapped in 
optical lattices [6]. The relative frequency uncertainty of these 
standards of the order of 10–18 and even below is expected [7].

For a few reasons, the main candidates for producing the 
new-generation frequency standards are alkaline earth and 
alkaline-earth-like atoms: Yb, Ca, Sr, Hg and Mg. To date, 
atoms of the first four elements can be effectively cooled down 
to the recoil energy limit [8], and even below, to obtain the 
Bose–Einstein condensate [9]. But for a long time research-
ers have not been able to reach the same success with Mg 
atoms [10]. At the same time, magnesium atoms have some 
advantages. For instance, the black body radiation (BBR) shift 
of the clock transition in magnesium (see figure 1) is smaller 
with respect to the other candidates. The strong dipole transi-
tion 31S0→31P1 with very short lifetime of exited state (2 ns) 
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and absence of optical pumping on the non-resonant level 
31D2 (in contrast to Ca and Sr) allows one to realize the first 
cooling stage very effectively [11–13]. Also, the relatively 
simple electronic configuration of the atom allows more pre-
cise calculations (for example, collisional and BBR shifts).

Recently some positive experimental results in magnesium 
cooling have been achieved at Hanover University [14]. The 
authors used 33P2→33D3 dipole transition for cooling and a 
dipole trap for collecting the ultracold magnesium atoms in 
the vicinity of a magneto-optical trap (MOT). However, only 
a small number of ultracold magnesium atoms (N = 5000, 
T = 5 μK) was confined in a dipole trap. In our paper we carry 
out theoretical analysis of sub-Doppler laser cooling of mag-
nesium atoms using a 33P2→33D3 dipole transition. The main 
goal of the work consists in finding the conditions which would 
greatly increase the number of ultracold magnesium atoms. 
The solution of this problem would enhance interest in mag-
nesium atoms and provide significant prospects of cold mag-
nesium atoms for quantum metrology and other applications.

For theoretical analysis the standard semi-classical 
approach is used, based on the Fokker–Planck equation for 
steady-state distribution of atoms in the momentum space 
f(p). We assume the light field configuration to be one-dimen-
sional and consisting of two counterpropagating laser beams 
with opposite circular polarizations (σ+σ– configuration). To 
solve the problem stated we have to do calculations out of 
widely used approximation of slow atoms [15–19]. Being out-
side this limit allows us to take into account non-linear effects 
in light force and diffusion coefficients in their dependences 
on atomic velocity. It also permits investigation of the kinetic 
properties of a cold atomic ensemble in a wide range of light 
field intensities and frequency detuning.

2. The problem statement

Let us briefly describe the semi-classical formalism for cal-
culating the kinetic properties of a cold atomic cloud. First of 

all we derive the master equation for the density of the atomic 
momentum distribution. Then this distribution will be used 
for calculating the average kinetic energy and for determining 
the optimal parameters to maximize the fraction of ultracold 
atoms in the whole atomic cloud.

As we mentioned above, the one-dimensional σ+σ− configu-
ration of the laser field is considered. It can be written as follows:
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= +

ω ω

ω
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+
− +
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where ±e 1 are the cyclic basis vectors, connected with the 
Cartesian ones:

= ∓ ±±e e e( i ) / 2 .x y1 (2)

The complex unit vector of local field polarization in the 
cyclic basis is

= −− +
−z e ee e e( ) .kz kz

1
i

1
i (3)

As follows from (1) and (2), the light field is linearly polar-
ized and the angle between the polarization and the x-axis 
depends on the coordinate z: φ =z kz( )  (see figure 2).

According to the semi-classical method we should assume 
the characteristic width Δp of atomic momentum distribution 
f(p) to be much larger than the recoil momentum ћk, which 
an atom acquires after emitting or absorbing one photon, i.e. 
ћk/Δp ≪ 1. We consider the kinetic stage of atomic cloud evo-
lution, when the internal state of the atom can be treated as 
steady state. Relaxation of this state occurs during the time 
t ≫ max{(γ)−1,( γS)−1} with γ the spontaneous damping rate of 
an excited state and S the saturation parameter. Also, the condi-
tion ωr ≪ min{γ,γS} should be satisfied, where ωr is the recoil 
frequency. Stated assumptions are the sense of semi-classical 
approximation. The start equation for steady-state Wigner’s 
distribution function has the following form (Fokker–Planck-
type equation, [18, 19]):

⎡
⎣⎢

⎤
⎦⎥

∂
∂

= − ∂
∂

+ ∂
∂

p

M z
f z p

p
F z p

p
D z p f z p( , ) ( , ) ( , ) ( , ).

2

2 (4)

Here M is an atomic mass and F(z,p) is the light force act-
ing on an atom with momentum p at the coordinate z. This 
force is the quantum-mechanical average of the corresponding 
force operator:

ρ= ⌢ ⌢F F z z pTr{ ( ) ( , )} ,(0) (5)

where

⌢ = − ∂
∂

⌢
F z

z
V z( ) ( ). (6)

Figure 1. Principal energy levels of 24Mg atom. The solid lines 
denote the cooling transitions (the first and the second stages 
with corresponding temperature limits), dashed line denote 
highly-forbidden transition that can be used for laser stabilizing 
(‘clock transition’).

Figure 2. One-dimensional configuration of light field composed of 
two counterpropagating σ+ and σ− laser beams.
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Superscript ‘0’ to the density matrix ρ⌢(0) means the zero 
order of the expansion of the matrix in the small parameter 
ћk/Δp. The operator 

⌢⌢= −V d E in (6) characterizes the dipole 
interaction of the atom with the laser field (1). In the rotating-
wave approximation (RWA) the operator 

⌢
V  does not depend 

on time:

⌢= −ℏ ⌢ +V RV z( ) h.c.,
eg

 (7)

with = ℏR dE /0  the Rabi frequency (d is the reduced matrix 
element of the dipole momentum operator of an atom), h.c. 
means Hermitian conjugation, and the dimensionless opera-
tor 

⌢
V

eg
 determined through the Clebsch–Gordan coefficients:
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Here Fg, Fe are the total angular momenta of ground and 
excited states respectively, and the components e z( )q , accord-
ing to (3), are = ∓±

∓e z e( ) kz
1

i .
The function D(z, p) in (4) is responsible for atomic diffu-

sion under the light field and it can be divided into spontane-
ous (s) and induced (i) parts:

= +D z p D z p D z p( , ) ( , ) ( , ).(s) (i) (9)

The first term is connected with fluctuations of spontane-
ous photon directions, while the second term is responsible 
for fluctuations of the light force (for example, see [21]).
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ρ= − ⌢ ⌢D F z z pTr{ ( ) ( , ) } .(i) (1) (11)

Superscript ‘1’ means the first order of expan-
sion of the density matrix in the small parameter ћk/Δp. ⌢ =P F m F m, ,

e
e e e e  is the projection operator onto the 

excited state of the atom and 
⌢
T0  is the z-component of the 

Wigner’s vector operator:
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Steady-state equation for the atomic density matrix ρ⌢(0), 
which appears in (5) and (10), is [21,22]

ρ ρ ρ∂
∂

⌢ +
ℏ

⌢ + ⌢ ⌢ + Γ⌢ ⌢ =p

M z
H V

i
[( ) , ] { } 0,(0)

0
(0) (0) (13)

where 
⌢
H0 is the Hamiltonian of the free atom, describing 

internal degrees of freedom of an atom. In the RWA it can 
be written as

δ⌢ = −ℏ ⌢
H P .0

e
 (14)

Here we input the frequency detuning δ = ω−ω0 between 
the laser frequency (ω) and the transition one (ω0). Operator 

ρΓ⌢ ⌢{ }(0)  describes processes due to the spontaneous relaxa-
tion of the excited state:

∑ρ γ ρ γ ρΓ⌢ ⌢ = ⌢ ⌢ − ⌢ ⌢ ⌢

= ±

†
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2
{ , } .

q

q q
(0) e (0)

0, 1

(0) (15)

The set of the differential equations (13) on the elements of 
the density matrix ρ⌢(0) is linear and homogeneous. It must be 
supplemented by the normalization condition:

ρ⌢ =Tr{ } 1.(0) (16)

The set of differential equations on the elements of the den-
sity matrix ρ⌢(1) has a similar form to (13), but with a special 
right part (e.g., see [21]):

ρ ρ ρ
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(17)

Here we input the operator of light force fluctuations 
δ⌢= ⌢−F F F (see the definitions (5) and (6)).

To calculate the temperature of an atomic cloud and the 
rate of cooling scientists often consider only averaged func-
tions =F p F z p( ) ( , ) z and =D p D z p( ) ( , ) z, i.e. without 
taking into account any localization effects. In this case the 
z-coordinate can be omitted in (4). Moreover, the slow atoms 
approximation is also widely used [12,15–19]. According to 
that approximation, there is the assumption that atoms dis-
place to a small distance (in comparison with a light wave-
length λ) during the characteristic time of atomic relaxation 
among the internal degree of freedom. In other words:

υ
λ

γ γ<< Smin{ , } , (18)

where υ is the atomic velocity, and the parameter of saturation 
S is defined as

γ δ
=

+
S

R

( / 2)
.

2

2 2 (19)

If the condition (18) is satisfied, it is enough for analysis 
to be limited to linear dependence of the light force on an 
atomic velocity, while the diffusion may be considered inde-
pendent of it:

υ α υ≈−F( ) , (20)

υ ≈D D( ) .0 (21)

The force (20) has a friction-like form, therefore the param-
eter α is called the friction coefficient. Taking account of the 
above, one can easily derive from (4) the new equation:

⎡
⎣⎢

⎤
⎦⎥

α + =
M

p D
p

f p
d

d
( ) 0.0 (22)

Its solution is the regular dome-shaped Maxwellian 
distribution:

⎡
⎣⎢

⎤
⎦⎥

∝ −f p
p

M k T
( ) exp

2

2

B
 (23)

with the well-known expression for temperature:

α=k T D / .B 0 (24)

In our paper we exploit a more general approach, being 
out of the limitations (18) and considering atomic velocity to 
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be arbitrary. This allows us to study the kinetic properties of 
the atomic cloud for an arbitrary parameter S (i.e. for any fre-
quency detuning and light field intensity). At that, as we will 
see below, the momentum distribution may differ significantly 
from the Maxwellian one.

The equations for density matrix (13) and (17), and 
simultaneously the Fokker–Planck equation (4), can be sig-
nificantly simplified in the case of σ+σ− field configuration. 
Indeed, as follows from figure 2, the light field polarization 
will be constant and linearly polarized along the x-axis at 
every point of space z, if we choose the new coordinate sys-
tem that rotates at the angle φ =z kz( )  round the z-axis (e.g., 
see [15, 23]). Thus, the interaction operator 

⌢
V , as well as 

the density matrices ρ⌢(0) and ρ⌢(1), the light force (5), the 
diffusion function (9) and the Fokker–Planck equation (4), 
no longer depend on the z-coordinate in the new coordinate 
system. To acquire the formulas for the new (rotating) coordi-
nate system it is convenient to use the Wigner matrix of rota-
tion [24], which is the representation of the rotation operator 
for the angle –φ around the z-axis:

∑φ φ⌢ − = − ′
′

′R F m D F m( ) , ( ) , .z

m

m m (25)

In our case the rotation matrix has a simple diagonal form:

δ δ⌢ ′ ′ = ′ ′F m D F m, , e .mkz
mm FF

i (26)

After transforming the matrices from the old basis to the 
new one, using the formula:

ρ ρ⌢ = ⌢⌢ ⌢*D D ,new old (27)

we see that the density matrix elements in the new basis dif-
fer from the corresponding elements in the old basis only by 
a local phase:

ρ ρ⌢ = ⌢ −( ) ( ) e .
m m
F F

m m
F F m m kz

new old
i( )

a b

a b

a b

a b a b (28)

In the new basis the differential equations (13) and (17) 
become algebraic (subscript ‘new’ is omitted for short):

υ ρ Γ ρℏ ⌢+ ⌢ + ⌢ ⌢ + ℏ⌢ ⌢ =k F H Vi [( ) , ] { } 0,z 0 0
(0) (0) (29)

υ ρ ρ

δ ρ

ℏ ⌢+ ⌢ + ⌢ ⌢ + ℏ Γ⌢ ⌢

= − ℏ ⌢ ⌢
k F H V

F

i [( ) , ] { }

2
{ , } .

z 0 0
(1) (1)

0
(0)

 
(30)

Here 
⌢
Fz  is the operator of the total angular momentum pro-

jection onto the z-axis and the operator of the atom–field inter-
action no longer depends on z:

⌢= −ℏ ⌢ −⌢ +− +V R T T( ) h.c.0 1 1 (31)

The light force operator in the new basis is also 
homogeneous:

⌢= − ℏ ⌢ + ⌢ +− +F k R T Ti ( ) h.c.0 1 1 (32)

Obviously, the light force (5) in the new basis does not 
depend on the coordinate. Taking into account the invari-
ance of the trace operator with respect to the rotations of the 
coordinate system, we can state that the light force is also 

homogeneous in the old (non-rotated) coordinate system. This 
is one of the differences between the σ+σ− configuration and 
the configuration lin ⊥ lin (orthogonal linear polarizations), 
where the sub-Doppler cooling mechanism also exists (so-
called ‘Sisyphus cooling’ of atoms).

3. Results and discussions

3.1. Light force and diffusion

Briefly, in this paper we omit the results of a detailed study of 
light force and the diffusion of atoms in a laser field. We just 
show a few plots that demonstrate the non-linear dependence 
of the kinetic coefficients (force and diffusion) on atomic 
velocity in various regimes. Those plots have been obtained 
by the numerical solutions of equations (29) and (30).

Figures 3 and 4 present the dependence of the light force on 
an atomic velocity (Doppler shift kυ) for weak and strong laser 

Figure 3. Light force under the weak laser field with R = 0.1γ. 
Parameters: δ =−0.5γ (solid) and δ =−2γ (dashed).

Figure 4. Light force in strong field regime, R = 10γ, δ =−0.5γ.

Laser Phys. 24 (2014) 074011
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fields, driving the dipole transition 33P2→33D3 (see  figure 1). 
As seen in figure 3, the light force has typical resonance peaks 
in the vicinity of the values kυ = ±δ. Far from the zero group 
of atomic velocity (kυ > γ) the counterpropagating σ+ and σ− 
fields act on the atoms almost independently. Therefore, in 
the resonant velocity groups kυ = ±δ>γ in the steady-state 
atoms are accumulated on one of the last Zeeman sublevels 

= = ± ⟩F m2, 2g g  (due to optical pumping). This situation is 
similar to a non-degenerate two-level atom and the estimate 
for the light force can be acquired via a simple equation for 
the force which acts on the two-level atom under a traveling 
lightwave of weak intensity [18, 19]:

γ δ υ γ
γ

γ≈ℏ = = ℏ = ℏF k S k
R

kk( )
/ 4

0.04 .max

2

2 (33)

This value is close to that given by the exact numerical 
solution (see figure 3). At the centre of the plot a sharp disper-
sion-like structure is observed, which is the manifestation of 
the sub-Doppler mechanism of laser cooling under the laser 
field with polarization gradients [15]. The presence of this 
structure leads to observation of sub-Doppler temperatures of 
cold atoms. However, it should be stressed that momentum 
distribution of atoms is defined not only by that linear part of 
the light force function, but also non-linear parts which may 
also affect the distribution in a significant manner (even under 
weak light field intensity). Therefore, the non-linear depend-
ences in the force and diffusion functions may result in a com-
plex shape of the distribution (as demonstrated below). It is 
very important to be able to control the shape of the momen-
tum distribution of atoms, because it gives us the opportunity 
for effective concentration of the cold atoms in the required 
regions of the momentum space (for example, in the vicinity 
of ultralow motions υ = 0).

The force exhibits wavy transformations with the light 
intensity increasing (figure 4). These additional resonances 
result from non-linear atom–field interactions, when induced 
multiphoton absorption and emission processes become con-
siderable (e.g., see [18, 19]). Moreover, the light force and 

the kυ-axis may intersect not only at the zero point, which 
leads to localization of atoms in the momentum space in the 
vicinity of various points kυ ≠ 0. The diffusion coefficients (9) 
also exhibit large non-linearity with increasing intensity. We 
just show the spontaneous part of total diffusion in figure 5 to 
demonstrate this fact. The induced part of the diffusion also 
suffers from strong non-linear effects.

3.2. Average kinetic energy and a fraction of ultracold atoms

When the momentum distribution function =f z p f p( , ) ( ) 
does not depend on the z-coordinate the Fokker–Planck equa-
tion (4) can be written in the following manner:

ω ω+ − =′ ′D u f u D u F u f u2 ( ) ( ) [2 ( ) ( )] ( ) 0.u ur r (34)

with u = kυ/γ. To derive this formula we have assumed physi-
cally meaningful boundary conditions f(±∞) = 0. All quanti-
ties in (34) are dimensionless: recoil frequency ωr = ћk2/2Mγ, 
light force is written in ћkγ units, and diffusion in (ћk)2γ units. 
The solution of (34) can be written in quadrature form:

∫ ω
ω

= ⋅
−∼ ∼

∼
∼

−∞

′∼
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥f u C

F u D u

D u
u( ) exp

( ) 2 ( )

2 ( )
d .

u

ur

r

 (35)

Figure 5. Spontaneous diffusion of atoms under strong laser field, 
R = 10γ, δ = −0.5γ (solid) and δ =−2γ (dashed).

Figure 6. Velocity distributions of atoms for R = 0.16γ (solid) and 
R = γ (dashed), δ = −2γ.

Figure 7. Velocity distribution of atoms for the case of strong light 
field R = 10γ, δ = −0.1γ.

Laser Phys. 24 (2014) 074011
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The constant should be chosen taking into account the nor-
malization condition:

∫ =
−∞

∞

f u u( ) d 1.
 (36)

Further we show several plots of the velocity distribution 
gained by the numerical solving of equation (34). It is seen 
from figure 6 that velocity distribution can have a significantly 
non-Maxwellian form, in contrast to the situation that hap-
pens when we use the slow atoms approximation (see formula 
(23)). If we worked under the limits of that approximation, 
we would gain a narrow part of the distribution and we could 
expect that all the atoms are ultracold. But the calculations 
made out of the slow atoms approximation provide a more 
realistic shape for the distribution.

The wide substrate of the distribution in figure 6 results 
from the Doppler cooling mechanism, while the narrow one 
is led by the sub-Doppler part of the light force (linear nar-
row part at the centre of figure 3). The distribution is broad-
ened and the atoms get hotter when the light field intensity 
increases. Also the intensity increasing can lead to observa-
tion of the additional points of localization of cold atoms in 
velocity space (figure 7). These peaks, obviously, are con-
nected with the peculiarities of the light force that have been 
mentioned above (see also figure 4).

Since velocity distribution in general has a non-Maxwellian 
form, it is more correct to consider the average kinetic energy 
of the ensemble instead of the temperature (unlike the case of 
slow atoms approximation). Figures 8(a) and (b) present the 
dependences of average kinetic energy on light intensity (Rabi 
frequency squared R2) and frequency detuning, respectively. 
Let us note that in the method based on the slow atoms approx-
imation we would not acquire such dependences with extrema 
(more precisely the minimum values of the functions). So, 
only the calculations out of that limit provide an opportunity 
to establish optimal parameters for cooling of atoms.

By analysing the minima on the plots of figures 8(a) and (b) 
in their dependences on the frequency detuning and laser field 
intensity, we can conclude that the minimum average kinetic 
energy of the ensemble that can be achieved is about 30 × Erec. 
Roughly speaking, it corresponds to the effective temperature 

Teff = 30 × 2.5 μK. It means that our cooling method, based on 
the transition 33P2→33D3, does not provide a sufficiently low 
temperature of the atomic cloud, just a bit less than 100 μK. 
The experimental result of [14] can be considered as the indi-
rect confirmation of our calculations, because the authors of 
that work were able to observe only a small number of ultra-
cold atoms, while the temperature of the ensemble as a whole 
was not less than 100 μK. However, for many further applica-
tions of cold atoms, including metrological ones, much colder 
magnesium atoms are required and in significant numbers.

Thus, a new task arises: how can we maximize the fraction 
of ultracold atoms in the whole ensemble? This problem can 
be solved by analysing the velocity distributions under various 
conditions instead of studying the average kinetic energy (or 
effective temperature) of the ensemble as a whole. As is seen 
in figure 6, the special shape of the distribution can be made 
by concentrating many of the atoms in the central part of the 
curve. Let us see what fraction of the magnesium atom will have 
a momentum, for instance, of p < 3ħk. Figure 9 shows that these 
special conditions can be achieved by increasing the number of 
ultracold (p < 3ħk) atoms up to 50%, which is rather a big value 
(the total number of atoms in a cloud may equal 106–108). After 
the cooling process in the MOT under these optimal conditions 
there will be ultracold as well as cold atoms in the whole cloud 
(e.g., see figure 6). We can collect only the ultracold part of the 
atoms by exploiting, for instance, a dipole trap with a certain 
depth, so that the relatively ‘hot’ atoms will leave the trap. Then 
we get an atomic cloud with many atoms (N ~ 105) at a very low 

Figure 8. Averaged kinetic energy of atomic ensemble as a function of (a) light field intensity for δ = −2γ, and (b) as a function of 
frequency detuning for R = 0.7γ.

Figure 9. Fraction of ultracold atoms in the cold atomic cloud, δ = –2γ.
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effective temperature (1–10 μK). So, this is the sense of a method 
for getting a large number of ultracold magnesium atoms.

In conclusion we would like to note some important details. 
Even though the dipole transition 33P2→33D3 is cyclic, never-
theless there is some probability that atoms will populate 33D1 
and 33D2 levels. This is because these levels are not so dis-
tant from 33D3 (see figure 1). From the levels 33D1 and 33D2 
an atom can spontaneously decay to the ground levels 33P0, 
33P1 and 33P2. Only the level 33P2 is resonant with the cooling 
lasers. So, additional repumping laser fields must be applied 
to pump the atoms from the non-resonant levels to the level 
33P2 for achieving effective cooling conditions for the cloud.

Also, we would like to note that we have considered 1D 
configuration of the light field. As the same time, the real 3D 
configuration, which is used for cooling in the MOT, being 
much more complicated for theoretical analysis, may lead to 
some changes in comparison with the 1D one (for example, 
see [12, 25]). So, the calculated values of optimal parameters 
may also be changed. Nevertheless, we consider that the main 
idea of the paper may be applicable to the 3D field as well.

The last thing we should mention is that the calculations 
for very cold atoms (p ~ ħk), strictly speaking, should be based 
on a more exact equation than the Fokker–Planck equation 
(4), which takes into account the recoil effect only in the first 
order of perturbation theory. Thus, we are going to carry out 
the exact quantum analysis of the problem in our next paper, 
based on the method developed in the literature [26].
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