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Broadband laser cooling on narrow transitions
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Laser cooling on transitions with a linewidth r much narrower than the recoil shift hk2 /m is studied numerically
according to a full quantum-mechanical treatment of the photon recoil. We propose and investigate a broadband
spectral configuration that has the purposes of (1) shortening the long cooling time characteristic for monochromat-
ic laser cooling on a slow transition and (2) reducing the kinetic energy of the stationary momentum distributions
considerably below the one-photon recoil energy (hk)2/2m. The energies of the computed stationary distributions
are limited only by the energy uncertainty of the narrow transition hIr << (hk)2 /2m. Applications to laser cooling of
alkaline earths on the narrow intercombination lines are discussed.

1. INTRODUCTION

Cooling of free neutral atoms by near-resonant laser radia-
tion has been successfully used to reduce their kinetic energy
down to the energy width of broad allowed dipole transi-
tions,1 corresponding to temperatures in the range below
1 mK. Recent experiments have shown effects of deep cool-
ing down to a few microkelvins that are closely connected to
the response of the internal multilevel dynamics of the at-
oms moving in spatially varying polarization gradients.2

In contrast to this situation, we investigate here one-di-
mensional laser cooling of V-level atoms in counterpropagat-
ing a+-a- radiation, which is determined only by spontane-
ous scattering of photons. Induced light forces are excluded
because angular-momentum conservation prevents redistri-
bution of photons among the counterpropagating waves.3

Preferably alkaline earths with their broad ('S0 - 'PD) and
narrow ('S o - 3P) transitions may be cooled by this scheme.

The new feature of our investigation is to consider the case
of a narrow atomic linewidth that makes a fully quantum-
mechanical treatment of the photon recoil necessary. Cas-
tin et al. used such a treatment for determining the limits of
Doppler cooling independently of the atomic linewidth4; we
apply their ansatz to study cooling below the recoil limit
down to the nanokelvin range.

Let us recall at this point the semiclassical picture of laser
cooling on broad transitions and its limits5 : in a red detuned
standing wave the Lorentzian rate of absorption of photon
momentum from the counterpropagating wave increases lin-
early with the momentum p near p = 0 (this gives damping),
while the total scattering rate is to the first order indepen-
dent of momentum (this gives constant rate of fluctuation
owing to spontaneously emitted photons). For broad lines
the counterbalance of force and diffusion results in a Max-
wellian steady state limited by (p2 /2m) hr/4 as a lower
boundary for the final momentum spread.

In contrast to this, our treatment does not consider the
average force and diffusion coefficient near p = 0 but rather
an integral momentum-balance equation for the steady-
state distribution whose width may be much smaller than
the recoil width. Cooling on a narrow transition with mono-
chromatic radiation is then found to be limited by the recoil

energy: the spread (p2
) of the narrowest possible distribu-

tion equals (hk)2 /2.4 With increasing linewidth the mini-
mum kinetic energy converges to the broad-line limit.

The quantum treatment also yielded restrictions on the
detuning appropriate for cooling. If the laser is detuned
into resonance with velocities smaller than (21/20)VR, where
VR = (hk)/m, no normalizable stationary solution of the mo-
mentum-balance equation exists.4 For these small detun-
ings, single spontaneous recoils shift the velocity out of the
velocity range defined by the resonance velocities with re-
spect to either of the counterpropagating waves; on the aver-
age atoms with kinetic energy near the recoil energy gain
more momentum than they loose, and as a consequence the
spread of the probability distribution is unlimited for an
improper detuning. The described escape of probability
manifests itself as non-Maxwellian wings of the stationary
distribution for small (but allowed) values of the detuning.

To avoid this kinematic restriction on the detuning and to
compress the momentum distribution much below the recoil
limit we propose to use multichromatic excitation6 of the
Doppler range in order to repump atoms to velocities smaller
than a certain cutoff velocity, which is defined by the blue
cutoff frequency of the spectral profile of the incident radia-
tion. A similar scheme has been discussed under the as-
sumption of an idealized square excitation profile and zero
linewidth by Pritchard et al.7 ; white-light cooling has been
investigated both theoretically and experimentally for laser
cooling on broad transitions. 8

The multichromatic excitation profile is strongly support-
ed by an additional motivation that becomes important in
the case of narrow transitions: the extremely low scattering
rate on a narrow transition leads to unachievable long cool-
ing times for atoms with initial velocities larger than the
recoil velocity. A confining external force (whether optical
or not) preventing the spatial diffusion during the long inter-
action time could not be applied because it would probably
destroy the low temperatures by heating owing to trapping-
force fluctuations.

The problem is thus to design a molasses-type cooling
experiment that may cool a velocity distribution much wider
than the cooled velocity range accessible by single-line cool-
ing. This is in principle comparable to the efforts to decel-
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erate atomic beams over a velocity region much larger than
the typical Doppler velocity VD = F/k.

In the case of atomic beams there do exist two well-estab-
lished techniques to address the problem of maintaining
resonance during deceleration that are not applicable to
monochromatic laser cooling in the narrow-linewidth case.
With the first technique one scans the laser frequency over
the Doppler width by an adiabatic frequency chirp.9 For
our problem of cooling on a slow transition any frequency
chirping at a rate rhk2/m would be too fast to allow the
atoms to lock to a fixed value of the Doppler detuning, thus
they would not be slowed down without loss from resonance
with the chirped laser.'0 In addition, the pulsed working
mode of the first solution would be unfavorable since the
achievable densities are small. The second technique relies
on position-dependent Zeeman tuning of the transition into
resonance." It would include positional trapping and for
the molasses situation would be equivalent to the magneto-
optical trap realized in Ref. 12. For narrow resonance cool-
ing this trapping scheme would suffer from a much larger
leakage rate than in the broad-line case, therefore an appli-
cation of multichromatic excitation would also be favorable.

For both purposes-stronger compression of the distribu-
tion and fast cooling of a large velocity range-we assume
that applying broadband radiation pressure by a set of nar-
row laser sidebands tuned to the red of the resonance is a
technique with unique possibilities in the case of narrow
transitions. The aim of the present paper is to discuss such
a cooling scheme in a quantitative way consistent with an
exact quantum-mechanical description of the problem.4 Up
to now, to our knowledge no analytical methods have been
applied to the study of multichromatic excitations. In order
to discuss realistic experimental conditions we here employ
a numerical approach.

The structure of the paper is as follows: In Section 2 we
summarize the features of the quantum treatment of the
photon recoil that are essential for our calculations and
introduce the momentum-balance equation and discuss its
significance for narrow-transition laser cooling by arbitrary
spectral schemes. In Section 3 we characterize the multi-
chromatic spectral configuration and demonstrate numeri-
cally that, by using it, a minimum kinetic energy of the order
of hr << (hk) 2/2m can be reached. We also discuss the
multiline configuration in view of cooling alkaline-earth ele-
ments on the intercombination transition in limited interac-
tion times.

For monochromatic cooling our results are consistent with
the numerical and analytical results of Ref. 4 and seem to
agree in the single-line case with Monte Carlo simulations
recently performed independently by Phillips et al.'3

2. QUANTUM DESCRIPTION OF LASER
COOLING ON NARROW TRANSITIONS

Semiclassical descriptions of radiation pressure5 are based
on the assumption that the atomic momentum remains con-
stant during the scattering process and enters the density-
matrix equations as a parameter, whereas radiation-induced
momentum changes can be found in a perturbative way in
powers of the photon momentum hk. For narrow transi-
tions, however, the momentum range within resonance, Ap

- mr/k, is much smaller than hk2/m, and the quantum-
mechanical density flux in momentum space can only be
treated in an integral form that is exact to arbitrary order in
hk.

Broadening of the atomic response owing to laser fluctua-
tions is completely neglected in this paper but may be in-
cluded in a future publication. The multichromatic spec-
tral profile is always assumed to be realized by means of
sidebands of an ideal monochromatic laser.

A. Determination of the Steady State
We investigate atoms with a (J = 0 - J = 1) transition
interacting with counterpropagating &a+-o- laser waves (see
Fig. 1). In this configuration the coherent interaction with
the polarized laser fields couples only closed families 4"14 of
momentum states. The family consists of the ground state
Ig, p) (p is the component along the laser-beam axis) having
m = J = 0 and the two excited states with a momentum
shifted by +hk and the magnetic quantum number m by +1,
le+, p + hk) and le-, p - hk). The atomic evolution due to
induced processes within one family is then described by a
particularly simple density-matrix equation of the general
form dp(p)/dt = L(p)p(p) because the exchange of the pho-
ton momentum with the laser field has been absorbed into
the definition of the density-matrix variables (including the
rotating-wave approximation):

7rg(p) = (g, PIPlp, g),

7r+(p) = (e+, p + hklple+, p + hk),

7r-(p) = (e, p - hklple, p - hk),

Pg+(P) = (g, pIpe+, p + hk)exp(iwLt),

p_+(p) = (e, p - hklple+, p + hk). (1)

Note, e.g., that the excited-state populations having an ex-
pectation value of the momentum p hk are labeled by p.

The interaction with the vacuum field, i.e., the spontane-
ous emission, now modifies this evolution in an essential
way: The relaxation operator introduces the only term that
is nondiagonal in the family momentum p and describes the
probability transfer due to spontaneous decay into a mo-
mentum class p from momenta p' between p + hk and p -
hk. This contribution to the evolution of the ground-state
density is

I e , p-hk> I e +, p+hk>
J = 1

I g ,p>
Fig. 1. Scheme of a (J = 0 - J = 1) transition driven by plane
counterpropagating a+-a- laser waves. The state le, m = 0, p) is.
not coupled to the ground state.
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p+hk
[d7rg(p)/dt]sE = r [+(P' - hk) + rr(p' + hk)]

p-hk

X b(p - p')dp',

= r[r+(p - hk) + 1r_(p + hk)], (2a)

where

~(p) = [1 + (p/hk)2 13/8hk (2b)

is the one-dimensional projection of the dipole emission
pattern onto the direction of the laser standing wave after
summation over the transverse momentum degrees of free-
dom. If we include this modification, the relevant density-
matrix equations are

drg(p)/dt = r[7r,(p - hk) + 7r(p + hk)] - iQ[p+g(p)

- pg+(p)]/2 - if[pg(p) - pg_(p)]/2, (3a)

dir+(p)/dt = -r7r+(p) + iQ[p+g(p) - pg+(p)]1 2, (3b)

dpg+(p)/dt = ig[7rg(p) - 7r+(p) - p_+(p)]/2

- [i(6'- kp/m) + r/2]pg+(p), (3c)

dp+_(p)/dt = ig[p+g(p) - pg-(p)]/2-(2ikp/m + r)p+-(p), (3d)
where Q is the Rabi frequency dEo/h of each traveling wave.
We remark that the correct detuning term appearing in the
density-matrix equation includes the recoil energy (hk) 2/2m
of the excited state,

6 = WL - WA - hk 2 /(2m). (4)

6', the dressed detuning, determines the resonant velocity
according to v = 6'/k.

Our model system represents the ideal scattering force
experiment, where there is no induced radiation pressure
because redistribution of the momentum between the coun-
terpropagating laser wave is excluded. The kinematic
transfer of probability in momentum space is caused by the
incoherent contribution to the evolution of the ground state
only [Eq. (3a)]. This simple connection between internal
and external dynamics is assumed for the broadband excita-
tion scheme as long as it affects only the excited populations
in a different way.

To understand the time evolution in the case of a slow
transition we have to keep in mind that the internal evolu-
tion does not reach its steady state on a time scale much
shorter than the time scale of radiation-pressure-induced
momentum changes, as is the case for fast transitions (broad
lines). Therefore exact time-dependent solutions would in-
volve all density-matrix variables. Thus to obtain the total
steady state we have to solve the equation dp/dt = 0 for the
internal and external degrees of freedom simultaneously.
The integral condition for the steady state of the ground-
state population is obtained from Eqs. (3a) and (3b):

,p+hk
0 = d7rg(p)/dt = r -r+(p) - r_(p) + J__ [7r+(p' - hk)

+ 7r(p' + hk)]4(p - p')dp'} (5)

Equation (5) is the basis for our numerical computation of
the stationary momentum distribution in the multichromat-
ic case as well. The integral represents the correct averaging
over the excited atoms without any expansion in p.

For a direct solution of Eq. (5) it is necessary to know the
excited-state populations. If only a single monochromatic
sideband is present, 7r+(p) and r_(p) can be obtained exactly
as functions of the population 7rg(p). The resulting steady-
state excited-state fraction 7r+(p)/rg(p) is given in Appendix
A and converges for low intensity to a Lorentzian. Let us
emphasize that this substitution,

7r+(p) = Y+(P)rg(P), (6)

involving only the ground-state population at momentum p,
is actually a particular and important feature of our model
system. Usually such a relation would be correct only to
zeroth order of h in a semiclassical iterative treatment.
Equation (6) is the reason for the agreement of Monte Carlo
calculations with numerical solutions of the exact density-
matrix equations dp/dt = 0. Specific quantum states such
as coherent superpositions of momentum eigenstates'14" 5 are
absent in this system.

Insertion of Eq. (6) into Eq. (5) yields the one-component
integral equation:

0 = -y+(p)7rg(p) - y_(p)7rg(p) + y+(p - hk)ig(p - hk)

+ y-(p + hk)7rg(p + hk). (7)

Equation (7) is the master equation for the steady state of
momentum-space optical pumping 7 below the recoil mo-
mentum using narrow transitions. Neither the excitation
function nor the momentum distribution has to be assumed
to be smooth. For monochromatic cooling on narrow transi-
tions the cooling limit could be derived analytically from Eq.
(7).4 However, for our purpose of investigating broadband
radiation pressure on transitions with narrow linewidths we
compute the stationary momentum distributions numerical-
ly and by a Monte Carlo method using Eqs. (6) and (7) plus
the normalization condition. Discretization of the momen-
tum and solution of the resulting linear system of equations
yielded all curves plotted continuously. In the broadband
case the necessary normalizability of the ground state was
inferred from the fact that the (v - -) part of the distribu-
tion is suppressed by the broadband radiation pressure for
any negative detuning.

Alternatively we used a little memory-consuming Monte
Carlo calculation to determine the steady-state momentum
distribution. In this simulation, for a given momentum p
the excitation rates are calculated according to the steady-
state probability 7r+(p), while the deexcitation is determined
by spontaneous decay in a low-intensity approximation.
The actual time spent between successive quantum jumps is
then chosen as a Poisson-distributed random number ac-
cording to these rates. The component of the fluorescence
recoil momentum on the direction of the laser beam is cho-
sen according to the distribution Eq. (2b). Provided that a
stationary solution exists, both internal and external dy-
namics equilibrate for t - -, and therefore the momentum
probability distribution of a random ensemble of atoms will
converge to the exact solution within the statistical error
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after a sufficient time, depending on the saturation and the
initial distribution.

The agreement of the Monte Carlo algorithm with the
direct solution of Eq. (7) was tested over a wide range of
parameters. It is therefore a versatile tool for the analysis of
more complex experimental situations. Since we are not
interested in the study of any short-time coherent transients
of the atomic dynamics, which is described by a full time-
dependent solution of Eqs. (3), we make use of the Monte
Carlo approach not only for the steady state but also for the
study of the kinetic stage of cooling in finite interaction
time, which is generally much longer than the lifetime of the
excited state.

B. Features of the Final Momentum Distribution
We now briefly discuss the results concerning the specific
limitation of monochromatic laser cooling.4 The minimum
kinetic energy achievable by monochromatic laser cooling on
narrow transitions is approximately (hk)2 /4m. In contrast
with the broad-line case, for narrow lines the minimum mo-
mentum spread is not reached for 6' = -r/2 but for 6' 
-2.2kvr. The fact that the detuning -2.2kVR is optimum in
the single-line case can be understood in terms of velocity-
space optical pumping: The dramatic variation of the nar-
row absorption profile with respect to the velocity within the
range (-VR, VR) prevents any form of linear damping. Cold
atoms tunnel out of the peak by a single scattering process
for improper detuning. The escape process generating the
non-Gaussian wings of the stationary distribution can only
be avoided if 6' < -2hk2 /m, which is an inherent limitation of
monochromatic narrow-transition laser cooling.

The shape of the final distribution is not Gaussian in
general but depends on the detuning. Therefore the distri-
bution is not sufficiently characterized by (p

2
) as a single

parameter. Likewise the notion of a temperature as the
single relevant parameter of a Boltzmann ensemble is not
adequate for the final state of the cooling process. Thus the
definition of an optimum cooling result or of a quantum
limit of laser cooling, respectively, requires noting the crite-
rion chosen. This might be the height of the distribution at
p = 0, its HWHF, or its rms momentum. Usually the distri-
bution with maximum height is found for detunings smaller
than those that produced a minimum rms velocity or the
smallest HWHM velocity. The detuning that is appropri-
ate for a minimum quadratic momentum spread is at the
same time large enough to produce a more Gaussian distri-
bution shape.

As a consequence we define the cooling limit of the broad-
band configuration by the 85th percentile velocity as well as
by the rms velocity of the final distribution.

3. LIMITS OF MULTICHROMATIC LASER
COOLING

The limitations of laser cooling on narrow transitions can be
overcome if a well-defined broadband excitation profile is
applied. It may be provided by a set of narrow laser side-
bands whose intensity envelope is reduced to zero within a
sharply defined frequency interval at a frequency resonant
to a certain cutoff velocity [Fig. 2(a)]. Thus large-velocity

admittance is combined with the high-velocity resolution
made possible by the narrowness of the atomic transition.

A. Description of the Multichromatic Spectral Scheme
For a study of broadband cooling we apply Eq. (7) using a
low-intensity approximation of the single-line excitation
function by a Lorentzian. The agreement between the Lor-
entzian and the exact excitation function is sufficient for
larger detunings. For narrow lines the appearance of a large
detuning such as 11 kvR> r gives a situation for which
the approximation is good. The total rates of absorption
from the right and the left laser beams are then estimated by
incoherent addition of the excitation rates for monochro-
matic excitation. Intermodulation of the excitation on the
scale of the difference frequency of the lines is ignored for
this investigation.

We set
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Fig. 2. Principle of the multiline excitation profile. (a) The laser
spectrum; (b) the dimensionless difference y+-y.. of the excited-
state fractions in the low-intensity limit corresponding to the differ-
ence of the absorption probability from the two counterpropagating
waves. The characteristic parameters of the profile are the cutoff
frequency 6', the frequency spacing sp, and the number of side-
bands N. The extension of the frequency profile may be chosen
according to the desired momentum admittance.
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N

-Y+(P) = E >+n(P), (8)
g (P)

0.8

where the excitation probability -y+n for the nth line tuned
with a detuning 6' = ' - (n - 1)w is

PO

1 + (6' - kp/m)2/(r2) 2 (9)

where P is the saturation parameter (Q/r) 2 for a single
sideband.

A plot of this incoherently summed excitation profile is
shown in Fig. 2(b). Of course, the incoherent generalization
has to be restricted to low saturation and should not be
considered as a substitute for future exact treatments. If
the multiline spectrum is realized by electro-optic phase
modulation, a study of the phase-modulated Bloch equa-
tions might be the starting point. Since we focus here on the
kinetic aspect of the problem we assume that a simulation in
the low- and intermediate-saturation limit is justified.

B. Optimum Cooling Parameters
Reaching the quantum limit of broadband laser cooling re-
quires a careful determination of the optimum spectral pa-
rameters, i.e., frequency spacing asp, frequency range, and
cutoff detuning 6'. The main purpose of the multiline
scheme-to repump atoms from the non-Gaussian wings of
the momentum distribution-can be qualitatively demon-
strated already with a small number of sidebands. The
steady-state distributions plotted in Fig. 3(a) show clearly
the additional compression of the distribution and the sup-
pression of the (v - a) wings owing to repumping of atoms.
Figure 3(b) shows a Monte Carlo result in perfect agreement
with the numerical solution of Eq. (7) plotted in Fig. 3(a) for
N = 4. With an increasing total spectral width [Fig. 3(c),
with increasing N], a reduction of the final momentum
spread is achieved owing to the suppression of the wings of
the distribution.

Figure 3(c) is an example of the result (which is valid for
any values of spacing and detuning), showing that an overall
momentum range Ap of 2hk at minimum has to be covered in
order to reach an optimum compression of the final distribu-
tion. This corresponds to the fact that atoms excited at p =
0 can decay to momenta p = ±2hk at maximum. Of course,
in real experiments a momentum admittance larger than
2hk is desired, e.g., to cool alkaline earths in a two-step
molasses from the Doppler limit of a strong transition to
below the recoil limit.

The second important parameter of the spectral profile is
the relative frequency spacing between the sidebands. Fig-
ure 4 displays the improvement of the cooling result with
decreasing spacing. The number of sidebands is varied
while the velocity range covered remains fixed; the total
power of all sidebands is kept constant. Independent of the
detuning B' (assuming that it is negative), we find a lower
limit of Ap at a spacing cLwp = r. Sidebands with a spacing
smaller than r seem to be inefficient, because the rate of
nonresonant excitation of p = 0 atoms increases with de-
creasing spacing and leads to increased heating of the cold
distribution.
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Fig. 3. Stationary momentum distributions for an increasing num-
ber of sidebands N. The spacing w5p is 0.5kVR, so that (N - 1) is
proportional to the covered frequency range. (a) The numerical
solutions of Eq. (7) for N = 1,2,4. The cutoff detuning is chosen to
be ' -0.9 kVR. A sideband spacing of wsp = 0.5kVR provided a
covered momentum range of 1.5hk for the N = 4 sidebands. (b)
Monte Carlo solution corresponding to (a) for N = 4, the ordinate:
atoms per momentum channel hk/25. (c) Ap as a function of the
number of sidebands N; B, and cap are as in (a) and (b), with Ap =
APrms (crosses) and Ap = AP85% (circles).
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Fig. 4. Optimization of sideband frequency spacing: circles,
APrms/hk; squares, P85 jhk. VR/VD = 32, the detuning 6, = -kVR, and
the fixed frequency range covered by the lines is 2kuR. Note that
the ordinate scale is logarithmic.

The last condition, wp = r, leads us to an excitation
profile that looks like a smoothed square profile with residu-
al comb structure and a nonvanishing off-resonant excita-
tion rate atp 0. The ratio -y+(hk)/y+(O) is independent of
Po in the low-intensity limit and is typically 102 (e.g., when
kVR = 3r, other parameters optimized).

C. Quantum Limit
An ideal square excitation profile that totally excludes reex-
citation of p = 0 atoms cannot be realized by any scattering
force cooling scheme. In other words, an ultimately dark
state of a V-level atom in the field of +-ar light is not
possible, and therefore in no way can the recoil heating be
reduced to zero. This is the main discrepancy with the
calculation in Ref. 7. [However, in the case of a A-level atom
a superposition of momentum states allows a formation of an
absolutely nondecaying (dark) state.14 1 5] The situation of a
weakly decaying state resembles the situation of shelved
ions16: the excitation profile provides a dark shelf in mo-
mentum space. On the other hand, the unavoidable residu-
al recoil heating does not limit the minimum energy to the
recoil energy. The postulation of the recoil limit17 did not
allow for an integral definition of the heating effect that
involves rg and y+ as weight functions strongly varying with-
in the recoil width [see Eq. (4.5) of Ref. 4].

The result of the Monte Carlo calculations according to
Eq. (7) shows that a compression down to the Doppler limit
of the narrow transition will be possible, i.e., down to an
uncertainty of the kinetic energy of Ekin Ir [<<(hk)2 /m].

To find the quantum limit of broadband cooling we calcu-
lated stationary momentum distributions by using excita-
tion profiles of the optimized form described above and by
varying the cutoff detuning 6'. The compression of the
momentum spread is improved by decreasing I6Cl but limited
by the variation of the residual excitation rate, which varies
approximately proportional to 1/16'1 (sum over Lorentzians).

We found a clear minimum of the momentum spread at an
optimum detuning,

if the sideband spacing equals r. This optimum refers to
the smallest Ap as measured by the 85th percentile of the
distribution [Fig. 5(a)]. The mean quadratic momentum
spread is usually higher by a factor of 2. This is due to the
special form of the distribution consisting of a pronounced
peak and flat wings extending to approximately 2.5 hk and
giving a (relatively) large contribution to the mean-square
momentum. The narrower curve A of Fig. 5(b) has a larger
quadratic momentum spread than the broader curve B.

It is remarkable that for broadband cooling the optimum
cutoff detuning is proportional to the square root of the
linewidth,

16optl -U (rkVR)'I',

and directly proportional to the expected velocity spread Av,

!Iopt/kI (VRVD)1/2 = (hr/m) 1/2 AV,

where VD = r/k. This should be compared with the case of
monochromatic narrow-line cooling, where the optimum de-
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Fig. 5. (a) Kinetic energy versus detuning 6, for vR = 3 OvD. The
ordinate: energy in units of hir; the abscissa: detuning 6' in units of
(kVRr)1/

2 . ws = r, with Armdhk (diamonds) and AP85TJhk (cross-
es). (b) Momentum distributions 6 = -1.8(kvRr)1 1 2 (curve A) and
6 =-3.6(kvRr)1 /2 (curve B). The normalization is as in Fig. 3(a).
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Fig. 6. Optimum detuning in units of (kVRr))1 2 and the minimum
kinetic energy in units of hr as a function of kvR/r calculated from
(a) Ap85 % and (b) APrms.-

temperature of 33 nK. For the region of broad lines (kvR/Y
- 0) the quantum limit converges to the Doppler limit hr/4.

D. Kinetic Limitations for the Cooling of Alkaline Earths
As stated in Section 1, the narrowness of the line results in an
extremely slow evolution of the momentum distribution and
makes it practically impossible to cool an initial ensemble
with a velocity width larger than a few recoil velocities by a
single narrow laser line. For a two-step cooling scheme for
alkaline earths an initial ensemble may be chosen that has
been cooled to the Doppler limit of the strong (1S0-'Pi)
transition with a linewidth rt. During the second cooling
stage with the narrow transition the first cooling laser is
switched off.

Let us first estimate the deceleration time for monochro-
matic cooling. For the corresponding initial momentum Pi
- (hrJtI2m)1 /2 the scattering rate would be negligible if the
detuning were chosen near optimum (6' =-2hk 2/m) for the
slow transition. The time T required to reduce an initial
momentum p down to zero in molasses has been derived in
Ref. 4; for a detuning 2hk 2/m it is

T p 4/(8h 2 rm2U 2 ),

where r is the linewidth and Q is the Rabi frequency of the
narrow transition. Inserting Pi from above and Q = r, we
have

(10)

The quotient of the broad linewidth over the narrow
linewidth (rJ/) may easily exceed 105 (see Fig. 1), in which
case cooling will not be observable.

A multiline scheme, on the contrary, is designed to provide
a maximum deceleration rate hk/2r during the whole cooling
process, from the molasses momentum of the first strong
transition down to the recoil momentum of the second slow
transition. In this case the required time would be

tuning -2.2kvR and the residual momentum spread Ap 0.7
hk are independent of the linewidth, and with the usual case
of a broad transition, where the optimum detuning is half
the linewidth 6 -r/2. This circumstance is related to the
fact that there is no linear damping force but an approxi-
mate step-function dissipative force counteracted by residu-
al heating for p = 0.

For large spacing wap, i.e., an increasingly single-line na-
ture of the spectral profile, the optimum 6, increases and
reaches the single-line value 6, -- 2kVR for a large wsp.
Using the optimum detuning for each linewidth r, we com-
puted the minimum kinetic energies up to a ratio kVR 100r
(Fig. 6). For the Ap from the 85% width of the distribution,
our results clearly reach the quantum limit hr independent-
ly of the linewidth [Fig. 6(a)]. The numerical results for the
mean-square spread seem to indicate a weak dependence of
the linewidth. However, it should be noted that the distri-
butions are not Gaussian and do not show scale invariance.
The leaking of probability into the wings (which cannot be
totally suppressed) extends to a range 2hk independently of
the linewidth, so that their contribution to the mean-square
momentum is not reduced so strongly as the 85% width of
the distribution is reduced with decreasing linewidth.

It may be noted that the quantum limit hr corresponds to
a velocity of -2 mm/sec for calcium, for example, and a

T 2T(hrtm/2)1/2/hk. (11)

The corresponding parameters for the alkaline earths calci-
um, magnesium, and strontium are listed in Table 1.

This estimate does not include the time of the final stage
of cooling from the recoil momentum down to the quantum
limit momentum. For linewidths down to kVR/100 we
checked within our Monte Carlo calculations that the aver-
age number of photons scattered in this stage is of the order
of the reciprocal probability to hit the interval (2mhr)/2
within an interval hk. Nevertheless, because of the magni-
tude of r, even interaction times of 50T may cause experi-
mental problems. For a maximum deceleration hk/2T, at-
oms diffuse over a free-flight distance

1 (p,)2/(4mhk) = r(hrFt/8hk) (12)

during the time of deceleration down to the molasses limit.
To estimate the total spread of an ensemble with an initial
momentum spread Pi as assumed above, we performed a
Monte Carlo simulation for the atomic motion in momen-
tum and position space. Of course, Heisenberg's uncertain-
ty relation limits the resolution of the position. Since the
momentum in our treatment is required to be defined better
than Ap mr/k, we have to obey Ax h/Ap VRT. For the
slow transitions under consideration, Ax - R

T is in the

F K-
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Table 1. Broadband Cooling Parameters for Alkaline Earthsa
Parameters Magnesium Calcium Strontium

X (nm) 457 657 689
r (sec) 4.6 X 10-3 0.5 10-3 21 X 10-6

hk/m (cm/sec) 3.64 1.52 0.66
hk 2/mr 2.3 X 103 73 1.26
rst/r 2.3 X 106 1.1 X 105 4.2 X 103
[(mhrst/2)1/21/hk 22.2 27.3 40.15
T (msec) 204 27.4 1.7
1 (mm) 234 2.83 0.2
2hr/kB (nK) 3.3 30 727

a The wavelength X, the lifetime T = 1/r, the recoil velocity hk/m, and the ratio of the recoil shift to the linewidth refer to the (So- 3P1 ) intercombination line. rt
is the linewidth of the strong (1SolPi) cooling transition. The cooling time Tis set equal to 2TApi/hk; the initial momentum spread Api is taken as the molasses mo-
mentum corresponding to the strong transition. The typical stopping distance is of the order of the listed parameter I = ApiT/2m. The value of the limit
temperature is calculated according to Ekh0 = hr.

millimeter range, which is much larger than the optical
wavelength X.

The results of the Monte Carlo simulations agree in prin-
ciple with relations (11) and (12). The calculated compres-
sion of the whole distribution function down to the range of
the recoil momentum takes approximately twice the time as
estimated in relation (11), owing to the wings of the initial
Gaussian distribution. During this time the corresponding
expansion is approximately four times the stopping distance
given in relation (12).

The comparison of the parameters of the alkaline earths
shows that calcium will be an interesting candidate for this
cooling scheme, because on one hand the reduction of the
temperature is larger than for strontium, while on the other
hand the spatial extension and the cooling time are experi-
mentally feasible.

4. CONCLUSION

We have presented a numerical investigation of the limit of
laser cooling on a narrow atomic transition with broadband
excitation. The probability transfer in momentum space
was described by an integral equation whose solutions were
obtained by numerical and Monte Carlo methods. The
achievable residual kinetic energies are of the order of the
width hr of the excited state if a detuning 6' -2(kvRr)/ 2

proportional to the square root of the linewidth is chosen.
The application of broadband laser light appears to be the

only feasible way to cool an atomic ensemble with a Doppler
width much larger than the recoil width using a narrow
transition. For the case of the intercombination line of
alkaline-earth elements, cooling in a finite interaction time
and volume was discussed. A proper candidate for experi-
mental realization of such a scheme seems to be calcium.

Multiline schemes open unique possibilities for the cool-
ing on narrow lines because the large velocity acceptance is
combined with a narrow final velocity distribution. Such
schemes can also be combined with other laser cooling and
trapping schemes and will improve them significantly.

The experimental realization profits from the discreteness
of the laser lines because the slope of the excitation profile is
still determined by the atomic Lorentzian if it is possible to
suppress the intensity envelope of the sidebands within one
frequency interval wxp- For the carrier, dye lasers with sub-
kilohertz stability, as recently demonstrated,' 8 will be re-
quired.

APPENDIX A

Solving the subset of the density-matrix Eqs. (3) that are
diagonal with respect to the momentum for 7r+(p) as a linear
function of r(p) = rg(p) + 7r+(p) + r_(p), we obtain

7r+(p) (92/4)(AA + 9 4/4)(A + Q2)

7r(P) A+A-A 0
2 + (A+ + A-)AOB + C

with

+= 6' - kp/m,

6. = 6' + kp/m,

60 = 6+ - 6 = -2kp/m,

A+ = r 2/4 + +2 + Q/2,

A = r2/4 + 2 + 92/2,

AO = r2/4 + 6o2,

B = (U2/2)(5S22/4 + 3r12/4 + +6_),

C = (6/4)(g2 + 3r2/4 + 6+6_).

This reduces to lowest order in Q2:

ir+(p) (2/4) 7r+(p)

-7r(p) A+ rg(p)
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