meta data for this page
  •  
Translations of this page:
  • en

This is an old revision of the document!


Mode matching

Literature

Mirror configuration

Parameter
  • Radius of curvature of mirror R1: R1= 1 m
  • Radius of curvature of mirror R2: R2= infinity (Incoupling side)
  • Wavelength: λ= 1.55×10^-6 nm
  • Length between the resonator mirrors: L= 485 mm
  • Beam radius at waist: w0
  • Beam radius at mirror: w1, w2
  • Stability parameter of the resonator: g1, g2
  • Distance between mirror and the waist: t1, t2

Beam waist calculation from resonator

$$g_1=1-\frac{L}{R1} \;\text{and}\; g_2=1-\frac{L}{R2}$$

From thesis of Sana:

  • Beam Radii, 1/e^2 of the intensity

$$w_1 = \sqrt{L\cdot\frac{\lambda}{\pi}}\cdot \left(\frac{g_2}{g_1\cdot(1-g_1\cdot g_2)}\right)^{1/4}$$ $$w_2 = \sqrt{L\cdot\frac{\lambda}{\pi}}\cdot \left(\frac{g_1}{g_2\cdot(1-g_1\cdot g_2)}\right)^{1/4}$$ From rom Appl. Opt. 5, 1550 (1966):
$$w_1 = \sqrt{\frac{\lambda\cdot R1}{\pi}}\cdot \left( \frac{(R2-L)\cdot L}{(R1-L)\cdot(R1+R2-L)}\right)^{1/4}$$ $$w_2 = \sqrt{\frac{\lambda\cdot R2}{\pi}}\cdot \left( \frac{(R1-L)\cdot L}{(R2-L)\cdot(R1+R2-L)}\right)^{1/4}$$ $$w_0 = \sqrt{\frac{\lambda}{\pi}}\cdot \left(\frac{L\cdot(R1 - L)\cdot(R2 - L)\cdot(R1 + R2 - L)}{(R1 + R2 - 2\cdot L)^{2}}\right)^{1/4}$$ In our case:
$$w_2=w_0$$ Position of the beam waist from the two mirrors:
$$t_1 = L\cdot\frac{R2 - L}{R1 + R2 - 2\cdot L}$$ $$t_2 = L\cdot\frac{R1 - L}{R1 + R2 - 2\cdot L}$$