meta data for this page
- en
This is an old revision of the document!
Mode matching
- Laser Beams and Resonators H. Kogelnik et al., Applied Optics 5, 1550 (1966)
Mirror configuration
Parameter
- Radius of curvature of mirror R1: R1= 1 m
- Radius of curvature of mirror R2: R2= 1×10^6 m (Incoupling side)
- Wavelength: λ= 1.55×10^-6 nm
- Length between the resonator mirrors: L= 485 mm
- Beam radius at waist: w0
- Beam radius at mirror: w1, w2
- Stability parameter of the resonator: g1, g2
- Distance between mirror and the waist: t1, t2
Beam waist calculation
$$g_1=1-\frac{L}{R1} \;\text{and}\; g_2=1-\frac{L}{R2}$$
From thesis of Sana:
- Beam Radii, 1/e^2 of the intensity
$$w_1 = \sqrt{L\cdot\frac{\lambda}{\pi}}\cdot \left(\frac{g_2}{g_1\cdot(1-g_1\cdot g_2)}\right)^{1/4}$$
$$w_2 = \sqrt{L\cdot\frac{\lambda}{\pi}}\cdot \left(\frac{g_1}{g_2\cdot(1-g_1\cdot g_2)}\right)^{1/4}$$
From rom Appl. Opt. 5, 1550 (1966):
$$w_1 = \sqrt{\frac{\lambda\cdot R1}{\pi}}\cdot \left( \frac{(R2-L)\cdot L}{(R1-L)\cdot(R1+R2-L)}\right)^{1/4}$$
$$w_2 = \sqrt{\frac{\lambda\cdot R2}{\pi}}\cdot \left( \frac{(R1-L)\cdot L}{(R2-L)\cdot(R1+R2-L)}\right)^{1/4}$$
$$w_0 = \sqrt{\frac{\lambda}{\pi}}\cdot \left(\frac{L\cdot(R1 - L)\cdot(R2 - L)\cdot(R1 + R2 - L)}{(R1 + R2 - 2\cdot L)^{2}}\right)^{1/4}$$
In our case:
$$w_2=w_0$$
Position of the beam waist from the two mirrors:
$$t_1 = L\cdot\frac{R2 - L}{R1 + R2 - 2\cdot L}$$
$$t_2 = L\cdot\frac{R1 - L}{R1 + R2 - 2\cdot L}$$