meta data for this page
Translations of this page:
- en
This is an old revision of the document!
Atomic clocks
General
- Optical atomic clocks, N. Poli et al., arXiv:1401.2378v2 (2014)
- Optical atomic clocks, A.D. Ludlow et al., Reviews of modern physics 87 (2015)
- Fritz Riehle, Frequency Standards, WILEY-VCH Verlag GmbH & Co. KGaA, 2004
- Optical dipole trap: optical_dipole_trap.pdf
Elements
- Best Clock so far (Stand 11/2016) http://www.nature.com/nature/journal/v506/n7486/pdf/nature12941.pdf doi:10.1038/nature12941
- Systematic Evaluation for this http://www.nature.com/articles/ncomms7896.pdf
- Best Clock Comparison so far (Stand 11/2016) Comparison of Two Independent Sr Optical Clocks with 1×10−17 Stability at 10^3 s: physrevlett.109.230801.pdf
- Mercury:
- Comparing a mercury optical lattice clock with microwave and optical frequency standards, R. Tyumenev et al., arXiv:1603.02026v2 [physics.atom-ph] 13 Nov 2016
Cavities
- Mercury (Paris) cavity:
- Ultrastable lasers based on vibration insensitive cavities, J. Millo et al., PR A 79, 053829 (2009)
- Laser locking to the Hg199 𝑆01−𝑃03 clock transition with 5.4×10−15/√𝜏 fractional frequency instability , J. J. McFerran et al., Optics Letters Vol. 37, No. 17, 3477-3479 (2012)
General
- Making optical atomic clocks more stable with 10−16-level laser stabilization, V. Jiang et al.,Nature Photonics 5, 158–161 (2011)
- High-precision laser stabilization via optical cavities M. Martin and J. Ye
Relevant effects influencing frequency stability
- Pund-Drever-Hall (PDH):
- Laser Phase and Frequency Stabilization Using an Optical Resonator, R. W. P. Drever et al., Appl. Phys. B 31, 97-105 (1983)
- Vibration:
- Simple vibration-insensitive cavity for laser stabilization at the 10^-16 level, J. Keller et al., Appl. Phys. B 116, 203–210 (2014)
- Thermal-Noise:
- Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities, K. Numata et al., PRL 93, 250602 (2004)
- Thermal noise in optical cavities revisited, T. Kessler et al., J. Opt. Soc. Am. B Vol. 29, No. 1 (2012)
- Residual amplitude modulation:
- Reduction of residual amplitude modulation to 1 × 10-6 for frequency modulation and laser stabilization, W. Zhang et al., Optics Letters Vol. 39, No. 7 (2014)
- Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique, Z. Li et al., Sensors and Actuators B 196, 23–30 (2014)
- Residual amplitude modulation in interferometric gravitational wave detector, K. Kokeyama et al., J. Opt. Soc. Am. A Vol. 31, No. 1 (2014)
- Residual Amplitude Modulation in Interferometric Gravitational Wave Detectors, K. Kokeyama et al., aXiv:1309.4522v1 [gr-qc] 18 Sep 2013
- ULE compensations rings:
- Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors, T. Legero et al., J. Opt. Soc. Am. B Vol. 27, No. 5 (2010)
Length
- 7 cm:
- Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15, A. D. Ludlow et al., Optics Letters Vol. 32, Issue 6, pp. 641-643 (2007)
- 10 cm:
- A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10−15, Q. F. Chen et al., REVIEW OF SCIENTIFIC INSTRUMENTS 85, 113107 (2014)
- 48 cm:
- 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity, S. Häfner et al., Optical Letters Vol. 40, No. 9 (2015)
Mirror layers
- Crystaline coatings:
- Tenfold reduction of Brownian noise in high-reflectivity optical coatings, Garrett D. Cole et al., Nature Photonics 7, 644–650 (2013)
Other geometries
- Cubic geometry:
- Force-insensitive optical cavity, S. Webster et al., Optics Letters Vol. 36, Issue 18, pp. 3572-3574 (2011)
- PTB took the NPL-design and updated it for a better longterm stability (see Häfner PHD-thesis, Chapter 4.2)
- Cryogenic single-crystal optical cavities:
- Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s, C. Hagemann et al., Optics Letters Vol. 39, No. 17 (2014)
- A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, T. Kessler et al., Nature Photonics Vol. 6, 687-692 (2012)
Applications
- Transfer of stability:
- Providing 10−16 Short-Term Stability of a 1.5-μm Laser to Optical Clocks, C. Hagemann et. al., IEEE Transactions on instrumentation and measurement, VOL. 62, NO. 6 (2013)
Application of Clocks
- Realization of a timescale with an accurate optical lattice clock: optica-3-6-563.pdf