% caculates the cavity spectrum and the frequency distance between TEM_00 % and higher order modes m+n. Two curved mirrors possible. % % 1. Vers.: 14.03.12 , T.Legero % Revised : 19.11.13 , T. Legero , Two curved mirrors possible.
clear all; clc;
Len = 0.48; % cavity length in [m] Curv1 = 1000000000; % mirror no. 1 curvature in [m] Curv2 = 1; % mirror no. 2 curvature in [m] Refl = 0.99998; % reflectivity of mirrors c = 299792458; % speed of light [m/s]
FSR = c /(2*Len); % Free-Spectral-Range Gouy = FSR/pi*acos(sqrt1)); % Gouy-Phase
% Finesse = pi*sqrt(Refl)/(1-Refl); % linewidth = FSR/Finesse;
fprintf('Cavity length L = %g m ⇒ FSR = %g MHz\n', Len, FSR/1E6); fprintf('Radius of Curvature R1 = %g m and R2 = %g m ⇒ Gouy = %g MHz\n\n', Curv1, Curv2, Gouy/1E6);
%fprintf('Reflectivity R = %g ⇒ Finesse F = %d \n ⇒ Linewidth d = %g MHz \n\n' , Refl, round(Finesse),linewidth/1E6);
mn_max = 100; w_max = 100;
delta = zeros(mn_max,w_max);
for w = 1:w_max
for mn = 1:mn_max delta(mn,w) = w*FSR - mn*Gouy; % Freq.Diff. von (q-w)ter höherer % Mode mn zu q-ter TEM_00-Mode if (abs(delta(mn,w)) < 10E6) fprintf('Freq. diff. of m+n = %g higher order mode to 00-mode is %g MHz\n', mn, delta(mn,w)/1E6); end end
end
%% plot
mn = 4; % Modenumber of Higher-Order-Mode to plot R = 0.95:0.01:1.05; % Vary Mirror-Curvature
G = FSR./pi*acos(sqrt(1-Len./R)); % Gouy-Phase %G = FSR./pi*acos(sqrt2)); % Gouy-Phase d = FSR - mn*G; % Difference between TEM_00 and TEM_mn
plot(R,G);