2025/07/06 14:24 1/4 Vergleich der Lasertreiber

Vergleich der Lasertreiber

Regel-OP

Unter https://www.analog.com/en/parametricsearch/11091 findet man eine große Auswahl an Low Noise OP's:

Regel-Op	LT1028/LT1128	TLE2141	AD8671	ADA4898-1	AD797	AD829	LT1124	LT1115
verwendet in	Orignal-Paper und Seck	KMK	Seck	Seck	Seck	Tip von Klaus	gefunden	gefunden
Typ. Offset- Temperaturdrift: [muV/°C]	0.2	1.7	0.3	1	0.2	-	0.3	0.5
Typ. Spannungsrauschen: [nV/sqrt(Hz)] @ f=10 Hz	1	15	77*	-	1.7	-	3	1
Typ. Spannungsrauschen: [nV/sqrt(Hz)] @ f=1 kHz	0.85	10.5	2.8	0.9	0.9	1.7	2.7	0.9
Typ. Stromrauschen: [pA/sqrt(Hz)] @ f=10 Hz	4.7	1.92	-	-	-	-	1.3	4.7
Typ. Stromrauschen: [pA/sqrt(Hz)] @ f=1 kHz	1	0.5	0.3	2.4	2	1.5	0.3	1.2
Gesamtrauschen: [muV]	6.11	9.44	6.1	7.51	7.02	6.58	6.08	6.25
Offset-Drift (Eingang)								

^{*} in V_p-p

- Das Gesamtrauschen eines OP-Amps wurde nach berechnet: rauschen eines op-amps.nb
 - Um ein Gefühl zu erhalten wer den größten Einfluss hat, wurden fixe ausgedachte Widerstandswerte an den Eingängen benutzt
 - Es wurde nur das Spannungs- bzw. Stromrauschen bei 10 kHz benutzt
 - Die gegebenen Werte wurden benutzt um die OP's zu vergleichen:
 - Temperatur T= 298 K
 - Bandbreite B= 0.5 MHz
 - Widerstand am Pluseingang RP= 2kOhm
 - Widerstand am Minuseingang RM= 2kOhm
- Anmerkung: Der AD829 wird in anderen sehr rauscharmen Schaltungen benutzt. Er ist sehr schnell (Video OP). Folglich kann er schnell anfangen zu Schwingen → Muss ein ebgestimmter Kondensator eingebaut werden! Link:
 - https://www.analog.com/media/en/technical-documentation/data-sheets/ad829.pdf

Spannungsreferenz

Referenz:	LTZ1000	LM399	REF02B
benutzt in	gefunden	originalpaper/Seck	KMK
Typ. Ausgangsspannung [V]	7.2	6.95	5
Typ. Temperatur Koeffizient /Drift [ppm/°C]	0.05	0.5	10 (max)
Maximales Rauschen [μV: peak to peak]*	2	56.6	10
Langzeitstabilität	2μV/sqrt(kHr)	8 ppm/sqrt(kH)	<fc #ff0000="">?</fc>

^{*}Für das Rauschen habe ich die Umrechnung VRMS = 0.3535 * VPP benutzt.

Transistor/FET/MOSFET

Transistor	VP03000M	IRF9520N	IRF9Z14	VP0106	CSD15380F3	DMP210DUFB4
Benutzt in	PTB	KMK	Seck	Original-Paper	gefunden	gefunden
Typ. Input-Kapaziät [pF]	125	350	270	45	8.1	13.72
Max. Input-Kapaziät [pF]	150	-	-	60	10.5	175
Channel Typ	Р	Р	Р	Р	N*	Р

^{*}Die N-Channel Transistoren haben eine geringere Input-Kapazität, jedoch müsste das gesamte Schaltbild umgebaut werden... → zu viel Aufwand!

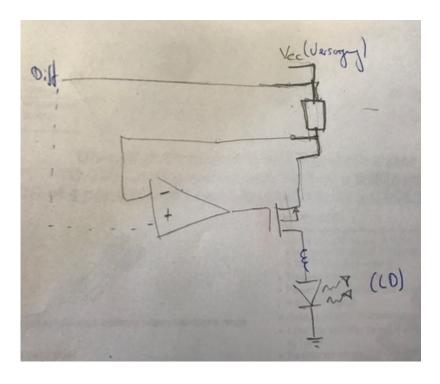
Messwiderstand

Quelle 1:

vsa101.pdf

Quelle 2:

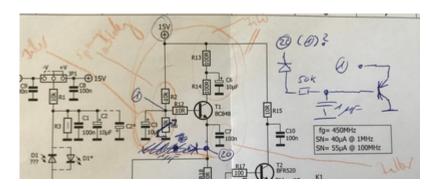
vpr221z.pdf


Widerstand [Ohm]	10	10	10	20	22	50
Quelle	1	Schaltbild PTB	2	1	Schaltbild KMK	Paper Libbrecht, Hall et al. Paper Seck, et al.
Temperaturkoeffizient [ppm/°C]	0.05	1	0.05	0.05	50	5
Rauschspannung [mu V]*1	1.28	1.28	1.28	1.81	1.90	2.87
Benötigte Leistung [W]*2	0.9	0.9	0.9	1.8	1.98	4.5
Widerstands-Leistung [W] @ 25°C	0.6	-	1.5	0.6	3	10
Besonderheit	-	-	4-Draht-Methode möglich*3	-	-	-

^{*1} Die Rauschspannung für den Widerstand wurde durch

https://elektroniktutor.de/elektrophysik/rauschen.html berechnet:

rauschleistung_eines_widerstands.nb


- Die Werte waren:
 - ∘ Temperatur T= 298 K
 - ∘ Bandbreite B= 10 MHz
- *2 Für den Widerstand wird angenommen, dass wir 10 Ohm benutzten mit maximal 300 mA Stromstärke, sodass darüber eine Leistung von P=R*I^2=0,9W entsteht.
- *3 Mit der 4-Draht-Methode kann man das Widerstandsschwanken der Leiterbahnen in Abhängigkeit von der Temperatur reduzieren
 - Der Temperaturkoeffizient von Kupfer liegt bei 3.9×10^-3/K
 - Wenn ein Widerstand mit 10 Ohm einen Temperaturkoeffizient von 0.05ppm/°C=5×10^-8/°C hat muss die Leiterbahn ~10^-5/°C stabil sein, sodass es nicht den Leiterbahnwiderstand verändert
 - Nimmt man eine Stromstärke von 300mA an und über U=R*I die Spannung ebenfalls 10^-6 V stabil sein, sodass die Leiterbahn (nach https://www.leiton.de/leiton-tools-spannungsabfall-leiterplatten.html) ~2m dick sein (mit typischer Leiterbahn dicke von 35 mum).
 - Wenn jedoch mit der 4-Draht-Methode die abfallende Spannung über den Widerstand vermessen wird und dadurch nicht mehr 300mA sondern nur ~muA fließen. Kann die Leiterbahndicke auf ~2-3mm angepasst werden

Spannungsregler

Spannungsregler		LM317	-
	Benutzt in	PTB, Liebrecht, KMK, Seck	-
	Spannungsrauschen	-	-

- Spannungsstabilität
 - Vorteil: Spannungsrauschen ist besser
 - Nachteil: Stabilität schelchter als LM317
 - Nur so stabil wie Spannungsversorgung +/- 15V

Display

Display	DPM160	LDP-340LCD-1
Benutzt in	PTB	КМК
Max. Anzeige	4.5-stellig	1999 (3.5-stellig)
Genauigkeit [%]	+/- 0.005	+/- 0.5 @ 23°C / Luftfeuchtigkeit von < 80%
Temperaturstabilität [ppm/°C]	30	-
Verlustleistung [mA]	-	30

From:

https://iqwiki.iqo.uni-hannover.de/ - IQwiki

Last update: 2019/11/05 09:48

