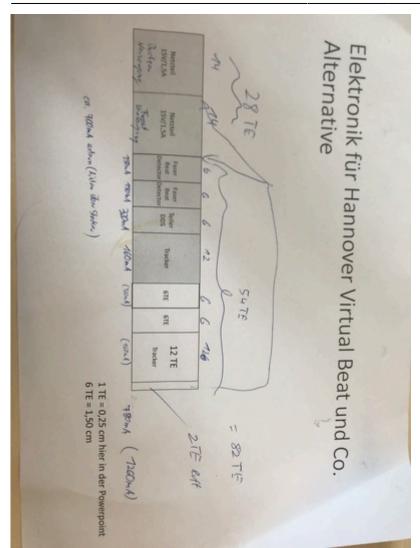

FiberLink Upgrade

Status: Anfang 2018

Kompaktifizieren der Elektronik

- 1. zweiten Rackeinschub implementieren
 - Labornetzteil reduzieren
 - kürzere Kabelstrecken
 - stabilere Spannungsversorgung für die Mini Circuits Verstärker
 - weniger unterschiedliche Massen (2 anstatt 4)
- 2. Verstärker für das Eingangssignal des DDS tauschen
 - Weniger Rauschen (weil nun Low noise Variante)
 - Weniger Verstärkung/Overkill → weniger Abschwächen danach etc.
 - kürzere Kabelstrecken


- weniger Phasenrauschen
- 3. Virtuelle/Transfer Beat Box aufbauen
 - kürzere Kabelstrecken
 - weniger Phasenrauschen, weil weniger Kabelwackeln
 - weniger BNC auf SMA Adapter
 - "nichts hängt mehr in der Luft
 - Verstärker mit einem low Noise Verstärker tauschen
 - Elektronik für den Dreiecksvergleich mit dem Transportablen Laser zum Charakterisieren der Link-Instabilität abbauen
- 4. Umsetztung der Many-Point-Elektronik-Kiste
 - o mehr Platz im Labor
 - intelligentere Kabelverlegung (kürzere Kabelstrecken)

Zweiter (neuer) Rackeinschub

- Spannungsversorgung ist für +/-15V ausgelegt
 - ∘ es gibt zwei Netzeile (je max 1.5A)
 - Buchsenversorgung (rechts anders als im Bild dokumentiert)
 - Frontversorgung (links anders als im Bild dokumentiert)

Anordnung in der Tabelle für das Rack von links nach rechts:

Gerät	Strom [mA]	Anmerkung
Netzteil (links)	1500	Versorgung für die Elektronik innerhalb des Racks
Netzteil (rechts)	1500	Versorgung für die Elektronik außerhalb des Racks: Verstärker und hardwarebasierter virtueller Beat
Faser Beat Detector 1	150	für den Beat zwischen dem Link und dem Kamm
Faser Beat Detector 2	150	für den Beat zwischen einem Laser und dem Kamm
Teiler DDS	320	Für das Runterteilen auf eine gemeinsame Repratensinke
Tracker	160	Für das Tracken für eine der beiden Faser Beat Detectoren
Freier Platz für Teiler DDS	320	Für das Runterteilen auf eine gemeinsame Repratensinke (Platzhalter - nicht vorhanden - evt. für Zukunft)
Freier Platz	-	
Freier Platz für Tracker	160	Für das Tracken für eine der beiden Faser Beat Detectoren (Platzhalter - nicht vorhanden - evt. für Zukunft)

Transferbeatscheme

- 1. PD
- 2. Filtern
 - 。 Achtung: Filter verändern die Phase
- 3. Ggf. Verstärken

4. Tracker

- PTB-Tracker möchten -30 bis -15dBm haben (-20dBm ist optimal). Dabei ist entscheident welche anderen Peak's in der Bandbreite des Trackers zu sehen sind. Er dient als schmalbandiger Bandpassfilter!
- Ausgang von den PTB Trackern sind überlicherweise +7dBm
- zweiten Ausgang sowie Monitorausgang mit 50 Ohm abschließen, wenn sie nicht benutzt werden
- Integrator reinnehmen oder nicht? Gute Frage eine Million unterschiedliche Meinungen! Meiner Meinung nach reinnehmen und vor jeder wichtigen Messung Aus-und Einschalten
- 5. Ggf. Filtern, weil der Tracker ein Rechtecksignal ausgibt und dadurch 2. und 3. höhere Harmonische ausgegeben werden
- 6. Splitter
 - Oder der Tracker hat zwei Ausgänge, sodass man einem direkt zum Zähler schicken kann.
 Dann entfällt der Splitter
- 7. Ggf. filtern
- 8. Mixen
 - L-Eingang möchte 7dBm haben
 - R-Eingang 0dBm oder weniger
 - Wichtig:
 - Der Eingang L möchte die Leistung nach dem Datenblatt haben (meistens +7dBm), weil dort die Kennlinie der Diode linear ist
 - Der Eingang R möchte nicht mehr als 0dBm Leistung (0dBm ist schon viel). Wenn R mehr Leistung bekommt entstehen höhrere Harmonische
 - Wenn der Eingang R von einem Tracker das Signal erhält, dann müsste man es vorher abschwächen.
 - Abschwächer können das Phasenrauschen beeinflussen (je nach Niveau)
- 9. Filtern
- 10. Tracker
- 11. Ggf. filtern
- 12. Zählen
 - 1. USB-PTB-DDS: When using divider setup with any input and output frequency, the input power should be:
 - DDS fungiert als Teiler
 - Signal vor und nach dem DDS filtern
 - Spiegelfrequenz kommt aus dem DDS ebenfalls heraus
 - Maximale Ausgangsfrequenz ist die Hälfte der Eingangsfrequenz
 - Trick: Wenn man eine höhere Frequenz haben möchte benutzt man die Spiegelfrequenz. Die Spiegelfrequenz hat die gleichen Eigenschaften
 - Eingangspegel:
 - f in < 150 MHz ⇒ 10 dBm < P < 20 dBm</p>
 - f in > 150 MHz \Rightarrow P \sim 0 dBm

- Ausgangspegel:
 - Programmierbar über Software
 - liegt zwischen 0 und 7dBm (muss nochmal gecheckt werden, weil wir mit 10 dBm
 P < 20 dBm reingehen)
- 1. Multiplizierer (2x)
 - Vor und hinter dem Multiplizierer muss gefiltert werden
 - Verändern die Phase
- 1. Verstärker
 - o nach Datenblatt den Eingangspegel nicht überschreiten
 - Verändern die Phase

Kompaktifizieren der Optik

- Nach Möglichkeit keinen Bi-EDFA mehr benutzen zur Erzeugung des Beats zwischen Link und Kamm
 - weniger Rauschen
 - weniger Equipment
- 2. Faserkomponenten für den Dreiecksvergleich mit dem Transportablen Laser zum Charakterisieren der Link-Instabilität abbauen
 - Mehr Platz
 - Mehr Leistung für den Beat zwischen Link und Kamm
- 3. Einbau eines WDM-Filters direkt hinter dem 1550nm-Faserausgang des Frequenzkammes implementieren
 - http://www.opneti.com/ProductList.asp?SortID=5
 - Vorteil:
 - Kein Leistungsverlust zwischen unterschiedliche ITU-Channelen
 - Weniger Schrotrauschen, weil die anderen ITU-Channel Frequenzen nicht auf die Photodioden gehen → kleinerer Untergrund
 - Silicon-Cavity: 194.400742 THz → ITU-Channel: 44
 - FiberLink: 194.400THz +/-100MHz → ITU-Channel: 44
 - Beast-2-Laser: 192.10THz → ITU-Channel: 21
 - Weiterer Einbau eines WDM-Filters für den ITU-Channel 21 steht bereit
 - ITU-Spacing ist 100GHz → bei 100MHz Repratenfrequenz gibt es 1000 Kammsinken pro Channel

Faserbeatbox

- 1. Faserkomponenten (Coupler, Polaristoren/FRM, etc.) für den Beat zwischen Link und Kamm in eine Box implementieren
 - Bessere passive Temperaturstabilität (Faserlängenstabilisierung)

- 2. Ggf. Coupler vor dem AOM aus der Many-Point-Kiste ebenfalls in die Box bauen
- 3. Konnektoren der Kiste:
 - 6x SMA-Konnektoren für AOM/EOM etc. (Anwendung für zum Beispiel: Faserlängenstabilisierung)
 - 1x BNC-Konnektor für mögliche Temperturüberwachung
 - 4x Faserverbinder (polarisationserhaltend) für z.B. Laser
 - 4x Faserverbinder (nicht polarisationserhaltend) für z.B. Kamm oder Faserausgang der RF-Beats zu den Photodioden

Status: Nach Umbau Ende 2018

update: 2018/10/17 groups:mg:private:resonatoren:fiberlink:start https://iqwiki.iqo.uni-hannover.de/doku.php?id=groups:mg:private:resonatoren:fiberlink:start 10:49

From:

https://iqwiki.iqo.uni-hannover.de/ - IQwiki

Permanent link:

https://iqwiki.iqo.uni-hannover.de/doku.php?id=groups:mg:private:resonatoren:fiberlink:start

Last update: 2018/10/17 10:49

