meta data for this page
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
groups:mg:project_ptb-cavity:mode_matching [2017/05/12 12:55] – ssauer | groups:mg:project_ptb-cavity:mode_matching [2017/10/06 13:31] (current) – ssauer | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Mode matching ====== | ====== Mode matching ====== | ||
- | {{ : | ||
**Literature** | **Literature** | ||
* {{ : | * {{ : | ||
+ | * {{ : | ||
+ | optical cavities by heterodyne detection}}G. Mueller et al., Optics Letters, Vol. **25**, No. 4 (2000) | ||
- | ==== Mirror configuration ==== | + | [[:groups:Mg:Project PTB-Cavity:Mode Matching first try|Mode Matching |
- | + | [[: | |
- | ==Parameter== | + | [[: |
- | * Radius of curvature of mirror R1: R1= 1 m | + | |
- | * Radius of curvature of mirror R2: R2= infinity (Incoupling side) | + | |
- | * Wavelength: λ= 1.55x10^-6 nm | + | |
- | * Length between the resonator mirrors: L= 485 mm | + | |
- | * Beam radius at waist: w0 | + | |
- | * Beam radius at mirror: w1, w2 | + | |
- | * Stability parameter of the resonator: g1, g2 | + | |
- | * Distance between mirror and the waist: t1, t2 | + | |
- | + | ||
- | ===Beam waist calculation=== | + | |
- | $$g_1=1-\frac{L}{R1} \;\text{and}\; g_2=1-\frac{L}{R2}$$ | + | |
- | + | ||
- | + | ||
- | From thesis of Sana:\\ | + | |
- | * Beam Radii, 1/e^2 of the intensity | + | |
- | $$w_1 = \sqrt{L\cdot\frac{\lambda}{\pi}}\cdot \left(\frac{g_2}{g_1\cdot(1-g_1\cdot g_2)}\right)^{1/ | + | |
- | $$w_2 = \sqrt{L\cdot\frac{\lambda}{\pi}}\cdot \left(\frac{g_1}{g_2\cdot(1-g_1\cdot g_2)}\right)^{1/ | + | |
- | From rom Appl. Opt. 5, 1550 (1966):\\ | + | |
- | $$w_1 = \sqrt{\frac{\lambda\cdot R1}{\pi}}\cdot \left( \frac{(R2-L)\cdot L}{(R1-L)\cdot(R1+R2-L)}\right)^{1/4}$$ | + | |
- | $$w_2 = \sqrt{\frac{\lambda\cdot R2}{\pi}}\cdot \left( \frac{(R1-L)\cdot L}{(R2-L)\cdot(R1+R2-L)}\right)^{1/ | + | |
- | $$w_0 = \sqrt{\frac{\lambda}{\pi}}\cdot \left(\frac{L\cdot(R1 | + | |
- | In our case:\\ | + | |
- | $$w_2=w_0$$ | + | |
- | Position of the beam waist from the two mirrors: | + | |
- | $$t_1 = L\cdot\frac{R2 - L}{R1 + R2 - 2\cdot L}$$ | + | |
- | $$t_2 = L\cdot\frac{R1 - L}{R1 + R2 - 2\cdot L}$$ | + |