meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
groups:mg:otherclocks [2018/05/02 14:24] – [Cavities] ssauergroups:mg:otherclocks [2018/05/15 11:50] (current) ssauer
Line 16: Line 16:
   * **Mercury:**   * **Mercury:**
     * {{ :groups:mg:1603.02026v2.pdf |Comparing a mercury optical lattice clock with microwave and optical frequency standards}}, R. Tyumenev et al., arXiv:1603.02026v2 [physics.atom-ph] 13 Nov 2016     * {{ :groups:mg:1603.02026v2.pdf |Comparing a mercury optical lattice clock with microwave and optical frequency standards}}, R. Tyumenev et al., arXiv:1603.02026v2 [physics.atom-ph] 13 Nov 2016
- 
-====== Cavities ====== 
----- 
- 
-  * Mercury (Paris) cavity:  
-      *  {{ :groups:mg:physreva.79.053829.pdf |Ultrastable lasers based on vibration insensitive cavities}}, J. Millo et al., PR A **79**, 053829 (2009) 
-      * {{ :groups:mg:ol-37-17-3477.pdf |Laser locking to the Hg199 𝑆01−𝑃03 clock transition with 5.4×10−15/√𝜏 fractional frequency instability }}, J. J. McFerran et al., Optics Letters Vol. **37**, No. 17, 3477-3479 (2012) 
- 
-==== General ==== 
-  * {{ :groups:mg:nphoton.2010.313.pdf |Making optical atomic clocks more stable with 10−16-level laser stabilization}}, V. Jiang et al.,Nature Photonics **5**, 158–161 (2011) 
-  * {{ :groups:mg:coating_book_chap_15_precision_fp_cavity.pdf |High-precision laser stabilization via optical cavities}} M. Martin and J. Ye 
- 
-==== Relevant effects influencing frequency stability ==== 
-  * **Pund-Drever-Hall (PDH):** 
-    * {{ :groups:mg:laser_phase_and_frequency_stabilization_using_an_optical_resonator.pdf |Laser Phase and Frequency Stabilization Using an Optical Resonator}}, R. W. P. Drever et al., Appl. Phys. B **31**, 97-105 (1983) 
-  * **Vibration:** 
-          * {{ :groups:mg:art_3a10.1007_2fs00340-013-5676-y.pdf |Simple vibration-insensitive cavity for laser stabilization at the 10^-16 level}}, J. Keller et al., Appl. Phys. **B 116**, 203–210 (2014)  
-          * https://journals.aps.org/pra/abstract/10.1103/PhysRevA.79.053829 
-  * **Thermal-Noise:** 
-          * {{ :groups:mg:physrevlett.93.250602.pdf |Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities}}, K. Numata et al., PRL **93**, 250602 (2004) 
-          * {{ :groups:mg:josab-29-1-178.pdf |Thermal noise in optical cavities revisited}}, T. Kessler et al., J. Opt. Soc. Am. B Vol. **29**, No. 1 (2012) 
-  * **Residual amplitude modulation:** 
-          * {{ :groups:mg:ol-39-7-1980.pdf |Reduction of residual amplitude modulation to 1 × 10-6 for frequency modulation and laser stabilization}}, W. Zhang et al., Optics Letters Vol. **39**, No. 7 (2014) 
-          * {{ :groups:mg:05095849.pdf |Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique}}, Z. Li et al., Sensors and Actuators B **196**, 23–30 (2014) 
-          * {{ :groups:mg:josaa-31-1-81.pdf |Residual amplitude modulation in interferometric gravitational wave detector}}, K. Kokeyama et al., J. Opt. Soc. Am. A Vol. **31**, No. 1 (2014) 
-              * {{ :groups:mg:1309.4522.pdf |Residual Amplitude Modulation in Interferometric Gravitational Wave Detectors}}, K. Kokeyama et al.,  aXiv:1309.4522v1 [gr-qc] 18 Sep 2013 
-  * **ULE compensations rings**:  
-          * {{ :groups:mg:leg10.pdf |Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors}}, T. Legero et al., J. Opt. Soc. Am. B Vol. **27**, No. 5 (2010)  
- 
-==== Length ==== 
-  * **7 cm:** 
-          * {{ :groups:mg:ol-32-6-641.pdf |Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15}}, A. D. Ludlow et al., Optics Letters Vol. **32**, Issue 6, pp. 641-643 (2007)  
- 
-  * **10 cm:** 
-          * {{ :groups:mg:che14.pdf |A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10−15}}, Q. F. Chen et al., REVIEW OF SCIENTIFIC INSTRUMENTS 85, 113107 (2014) 
- 
-  * **48 cm:** 
-          * {{ :groups:mg:ol-40-9-2112.pdf |8  ×  10−17 fractional laser frequency instability with a long room-temperature cavity}}, S. Häfner et al., Optical Letters Vol. **40**, No. 9 (2015) 
- 
-==== Mirror layers ==== 
-  * **Crystaline coatings:** 
-          * {{ :groups:mg:nphoton.2013.174.pdf |Tenfold reduction of Brownian noise in high-reflectivity optical coatings}}, Garrett D. Cole et al., Nature Photonics **7**, 644–650 (2013) 
- 
-==== Other geometries ==== 
-  * **Cubic geometry:** 
-          * {{ :groups:mg:ol-36-18-3572.pdf |Force-insensitive optical cavity}}, S. Webster et al., Optics Letters Vol. **36**, Issue 18, pp. 3572-3574 (2011) 
-                * PTB took the NPL-design and updated it for a better longterm stability (see Häfner PHD-thesis, Chapter 4.2) 
- 
-  * **Cryogenic single-crystal optical cavities:** 
-          * {{ :groups:mg:ol-39-17-5102.pdf |Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s}}, C. Hagemann et al., Optics Letters Vol. **39**, No. 17 (2014) 
-          * {{ :groups:mg:nphoton.2012.217.pdf |A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity}}, T. Kessler et al., Nature Photonics Vol. **6**, 687-692 (2012) 
-          * https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.263202 
- 
-==== Applications ==== 
-  * **Transfer of stability:** 
-        * {{ :groups:mg:06468089.pdf |Providing 10−16 Short-Term Stability of a 1.5-μm Laser to Optical Clocks}}, C. Hagemann et. al., IEEE Transactions on instrumentation and measurement, VOL. 62, NO. 6 (2013) 
  
 ====== Application of Clocks ====== ====== Application of Clocks ======